dong_dl 1 ano atrás
pai
commit
7661050950

+ 1 - 0
.gitignore

@@ -4,3 +4,4 @@
 /build_win
 /inc/MqttBuildInfo.h
 /.vs
+/src/sqlcipher/include/sqlite3.h

+ 1 - 1
CMakeLists.txt

@@ -20,7 +20,7 @@ IF(${CMAKE_SYSTEM_NAME} MATCHES "Emscripten")
 	set(USE_SSL OFF)
 	set(USE_WS OFF)
 	set(USE_WSS OFF)
-	set(USE_SQLITE3 ON)
+	set(USE_SQLITE3 OFF)
 	set(USE_ALL_SQLITE3 OFF)
 	add_definitions(-DUSE_WASM -D__linux__)
 ELSE()

+ 6 - 5
inc/proto/ProtoParser.h

@@ -280,10 +280,10 @@ private:
     std::string                  _clientId;
     std::string                  _topic;
     std::string                  _payload;
-    parserCallback               _callback = nullptr;
-    onConnectedCallback          _onConnected = nullptr;
+    parserCallback               _callback       = nullptr;
+    onConnectedCallback          _onConnected    = nullptr;
     onDisconnectedCallback       _onDisconnected = nullptr;
-    onMessageCallback            _onMessage = nullptr;
+    onMessageCallback            _onMessage      = nullptr;
     void                        *_userData;
     uint32_t                     _msgId     = 0;
     uint32_t                     _respMsgId = 0;
@@ -293,8 +293,9 @@ private:
     std::map<int, std::string>   _topics;
     std::mutex                   _callbackLock;
     std::map<int, TopicCallback> _callbacks;
-
-    ProtoParserPrivate *p;
+    std::map<int, std::string>   _upui;
+    std::mutex                   _upuiLock;
+    ProtoParserPrivate          *p;
 #ifdef USE_WASM
     EMSCRIPTEN_WEBSOCKET_T _socket;
     std::string            _url;

+ 1 - 1
src/proto/CMakeLists.txt

@@ -31,7 +31,7 @@ IF(${CMAKE_SYSTEM_NAME} MATCHES "Emscripten")
     --bind 
     --no-entry 
     -s ALLOW_MEMORY_GROWTH=1 
-    -s EXTRA_EXPORTED_RUNTIME_METHODS=\"['addFunction']\" 
+    -s EXPORTED_RUNTIME_METHODS=\"['addFunction']\" 
     -s ALLOW_TABLE_GROWTH 
     -s WASM=1 
     -s ASSERTIONS=0 

+ 30 - 2
src/proto/ProtoParser.cpp

@@ -432,6 +432,12 @@ void ProtoParser::parsePayload(std::string &payload)
         }
         else if (_topic.compare("UPUI") == 0) // getUserInfo
         {
+            {
+                std::lock_guard<std::mutex> l(_upuiLock);
+                auto                        it = _upui.find(_respMsgId);
+                if (it != _upui.end())
+                    _upui.erase(it);
+            }
             PullUserResult r;
             if (r.ParseFromArray(str.c_str(), str.length()))
             {
@@ -682,7 +688,20 @@ std::string ProtoParser::getUserInfoPack(std::string requestJson)
     PullUserRequest par;
     if (!parseJson(requestJson, par) || par.request().size() == 0)
         return "";
-
+    if (par.request().size() == 1)
+    {
+        std::lock_guard<std::mutex> l(_upuiLock);
+        for (auto &it : _upui)
+        {
+            if (it.second.compare(par.request(0).uid()) == 0)
+            {
+#ifdef DUMP
+                MqttLog(MQTT_LOG_INFO, "already pull user for: %s", par.request(0).uid().c_str());
+#endif
+                return "";
+            }
+        }
+    }
 #ifdef DUMP
     MqttLog(MQTT_LOG_INFO, "getUserInfoPack: %d, %s", par.request().size(), par.request().at(0).uid().c_str());
 #endif
@@ -690,7 +709,14 @@ std::string ProtoParser::getUserInfoPack(std::string requestJson)
     std::string str;
     par.SerializeToString(&str);
     str = dataEncrypt(str);
-    return publish("UPUI", str);
+    uint32_t msgId;
+    auto     ret = publish("UPUI", str, &msgId);
+    if (par.request().size() == 1)
+    {
+        std::lock_guard<std::mutex> l(_upuiLock);
+        _upui[msgId] = par.request(0).uid();
+    }
+    return ret;
 }
 
 std::string ProtoParser::getUserSettingPack(std::string requestJson)
@@ -1643,6 +1669,8 @@ EM_BOOL ProtoParser::onWebSocketMessage(int eventType, const EmscriptenWebSocket
 
 void ProtoParser::send(std::string &str)
 {
+    if (str.length() == 0)
+        return;
     if (_socket == 0)
     {
         MqttLog(MQTT_LOG_ERROR, "_socket == 0");

+ 14 - 13
src/proto/ProtoParserPrivate.cpp

@@ -240,15 +240,15 @@ int ProtoParserPrivate::getMessage(bool before, uint64_t idx, int count, int typ
     std::string sql = "select _mid, _from, _type, _target, _line, _data, _searchable_key, _dt, _content_type, _to from t_messages where _type = ? and _line = ? and _target = ?";
     if (idx == 0)
     {
-        sql += " order by _mid limit " + std::to_string(count);
+        sql += " order by _mid desc limit " + std::to_string(count);
     }
     else if (before)
     {
-        sql += " and _mid < ? order by _mid limit " + std::to_string(count);
+        sql += " and _mid < ? order by _mid desc limit " + std::to_string(count);
     }
     else
     {
-        sql += " and _mid < ? order by _mid limit " + std::to_string(count);
+        sql += " and _mid < ? order by _mid desc limit " + std::to_string(count);
     }
 
     return exec(
@@ -266,8 +266,7 @@ int ProtoParserPrivate::getMessage(bool before, uint64_t idx, int count, int typ
             sqlite3_bind_int(stmt, 2, line);
             bindText(stmt, 3, target); 
             if (idx != 0)
-                sqlite3_bind_int64(stmt, 4, idx);
-        });
+                sqlite3_bind_int64(stmt, 4, idx); });
 #else
     if (before)
     {
@@ -317,11 +316,12 @@ int ProtoParserPrivate::getConversation(const char *keyword, const char *types,
 #if defined DUMP || defined DUMP_MESSAGE
     MqttLog(MQTT_LOG_INFO, "getConversation, types: %s, lines: %s, keyword: %s", types, lines, keyword == nullptr ? "" : keyword);
 #endif
-    std::string sql = "select _mid, _from, _type, _target, _line, _data, _searchable_key, _dt, _content_type, _to from t_messages where _type in " + str1 + " and _line in " + str2 + " ";
+    std::string sql = "select _mid, _from, _type, _target, _line, _data, _searchable_key, _dt, _content_type, _to from (select * from t_messages where _type in " + str1 + " and _line in " + str2 + " ";
     if (keyword != nullptr && strlen(keyword) > 0)
     {
-        sql += " and _searchable_key like ? order by _mid limit 100";
+        sql += " and _searchable_key like ? ";
     }
+    sql += "order by _mid desc) group by _target, _line, _type limit 100";
     return exec(
         sql.c_str(), [&](auto stmt) {
             Message msg;
@@ -352,7 +352,7 @@ int ProtoParserPrivate::getConversation(const char *keyword, const char *types,
             bool has = false;
             for (auto conv : convs)
             {
-                if (it->conversation().target() == conv.target())
+                if (it->conversation().line() == conv.line() && it->conversation().type() == conv.type() && it->conversation().target() == conv.target())
                 {
                     has = true;
                     break;
@@ -362,6 +362,7 @@ int ProtoParserPrivate::getConversation(const char *keyword, const char *types,
                 continue;
             if (!cb(*it))
                 break;
+            convs.emplace_back(it->conversation());
         }
     }
     return 0;
@@ -613,8 +614,8 @@ int ProtoParserPrivate::update(GetUserSettingResult &result)
     return insert(sql, [&](auto stmt) {
         if (i >= n)
             return false;
-        auto& entry = result.entry(i);
-        auto err   = sqlite3_reset(stmt);
+        auto &entry = result.entry(i);
+        auto  err   = sqlite3_reset(stmt);
         sqlite3_bind_int(stmt, 0, entry.scope());
         bindText(stmt, 1, entry.key().c_str());
         bindText(stmt, 2, entry.value().c_str());
@@ -776,8 +777,8 @@ int ProtoParserPrivate::update(PullMessageResult &result, uint64_t &head)
     ret   = insert(sql.c_str(), [&](auto stmt) {
         if (i >= n)
             return false;
-        auto& entry = result.message(i);
-        auto err   = sqlite3_reset(stmt);
+        auto &entry = result.message(i);
+        auto  err   = sqlite3_reset(stmt);
 
         int col = 1;
         sqlite3_bind_int64(stmt, col++, entry.message_id());
@@ -803,7 +804,7 @@ int ProtoParserPrivate::update(PullMessageResult &result, uint64_t &head)
         return true;
     });
 
-    err = exec("select _mid, _from, _type, _target, _line, _data, _searchable_key, _dt, _content_type, _to from t_messages", [&](struct sqlite3_stmt *stmt) {
+    err = exec("select _mid, _from, _type, _target, _line, _data, _searchable_key, _dt, _content_type, _to from t_messages order by _mid desc", [&](struct sqlite3_stmt *stmt) {
         Message msg;
         toMessage(stmt, msg);
 

+ 1 - 1
src/proto/pch.h

@@ -34,6 +34,6 @@
 #endif
 
 //#define DUMP
-#define DUMP_MESSAGE
+//#define DUMP_MESSAGE
 
 uint64_t htonll(uint64_t Value);

+ 0 - 9925
src/sqlcipher/include/sqlite3.h

@@ -1,9925 +0,0 @@
-/*
-** 2001-09-15
-**
-** The author disclaims copyright to this source code.  In place of
-** a legal notice, here is a blessing:
-**
-**    May you do good and not evil.
-**    May you find forgiveness for yourself and forgive others.
-**    May you share freely, never taking more than you give.
-**
-*************************************************************************
-** This header file defines the interface that the SQLite library
-** presents to client programs.  If a C-function, structure, datatype,
-** or constant definition does not appear in this file, then it is
-** not a published API of SQLite, is subject to change without
-** notice, and should not be referenced by programs that use SQLite.
-**
-** Some of the definitions that are in this file are marked as
-** "experimental".  Experimental interfaces are normally new
-** features recently added to SQLite.  We do not anticipate changes
-** to experimental interfaces but reserve the right to make minor changes
-** if experience from use "in the wild" suggest such changes are prudent.
-**
-** The official C-language API documentation for SQLite is derived
-** from comments in this file.  This file is the authoritative source
-** on how SQLite interfaces are supposed to operate.
-**
-** The name of this file under configuration management is "sqlite.h.in".
-** The makefile makes some minor changes to this file (such as inserting
-** the version number) and changes its name to "sqlite3.h" as
-** part of the build process.
-*/
-#ifndef SQLITE3_H
-#define SQLITE3_H
-#include <stdarg.h>     /* Needed for the definition of va_list */
-
-/*
-** Make sure we can call this stuff from C++.
-*/
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-
-/*
-** Provide the ability to override linkage features of the interface.
-*/
-#ifndef SQLITE_EXTERN
-# define SQLITE_EXTERN extern
-#endif
-#ifndef SQLITE_API
-# define SQLITE_API
-#endif
-#ifndef SQLITE_CDECL
-# define SQLITE_CDECL
-#endif
-#ifndef SQLITE_APICALL
-# define SQLITE_APICALL
-#endif
-#ifndef SQLITE_STDCALL
-# define SQLITE_STDCALL SQLITE_APICALL
-#endif
-#ifndef SQLITE_CALLBACK
-# define SQLITE_CALLBACK
-#endif
-#ifndef SQLITE_SYSAPI
-# define SQLITE_SYSAPI
-#endif
-
-/*
-** These no-op macros are used in front of interfaces to mark those
-** interfaces as either deprecated or experimental.  New applications
-** should not use deprecated interfaces - they are supported for backwards
-** compatibility only.  Application writers should be aware that
-** experimental interfaces are subject to change in point releases.
-**
-** These macros used to resolve to various kinds of compiler magic that
-** would generate warning messages when they were used.  But that
-** compiler magic ended up generating such a flurry of bug reports
-** that we have taken it all out and gone back to using simple
-** noop macros.
-*/
-#define SQLITE_DEPRECATED
-#define SQLITE_EXPERIMENTAL
-
-/*
-** Ensure these symbols were not defined by some previous header file.
-*/
-#ifdef SQLITE_VERSION
-# undef SQLITE_VERSION
-#endif
-#ifdef SQLITE_VERSION_NUMBER
-# undef SQLITE_VERSION_NUMBER
-#endif
-
-/*
-** CAPI3REF: Compile-Time Library Version Numbers
-**
-** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
-** evaluates to a string literal that is the SQLite version in the
-** format "X.Y.Z" where X is the major version number (always 3 for
-** SQLite3) and Y is the minor version number and Z is the release number.)^
-** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
-** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
-** numbers used in [SQLITE_VERSION].)^
-** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
-** be larger than the release from which it is derived.  Either Y will
-** be held constant and Z will be incremented or else Y will be incremented
-** and Z will be reset to zero.
-**
-** Since [version 3.6.18] ([dateof:3.6.18]), 
-** SQLite source code has been stored in the
-** <a href="http://www.fossil-scm.org/">Fossil configuration management
-** system</a>.  ^The SQLITE_SOURCE_ID macro evaluates to
-** a string which identifies a particular check-in of SQLite
-** within its configuration management system.  ^The SQLITE_SOURCE_ID
-** string contains the date and time of the check-in (UTC) and a SHA1
-** or SHA3-256 hash of the entire source tree.  If the source code has
-** been edited in any way since it was last checked in, then the last
-** four hexadecimal digits of the hash may be modified.
-**
-** See also: [sqlite3_libversion()],
-** [sqlite3_libversion_number()], [sqlite3_sourceid()],
-** [sqlite_version()] and [sqlite_source_id()].
-*/
-#define SQLITE_VERSION        "3.34.1"
-#define SQLITE_VERSION_NUMBER 3034001
-#define SQLITE_SOURCE_ID      "20230316"
-
-/*
-** CAPI3REF: Run-Time Library Version Numbers
-** KEYWORDS: sqlite3_version sqlite3_sourceid
-**
-** These interfaces provide the same information as the [SQLITE_VERSION],
-** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
-** but are associated with the library instead of the header file.  ^(Cautious
-** programmers might include assert() statements in their application to
-** verify that values returned by these interfaces match the macros in
-** the header, and thus ensure that the application is
-** compiled with matching library and header files.
-**
-** <blockquote><pre>
-** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
-** assert( strncmp(sqlite3_sourceid(),SQLITE_SOURCE_ID,80)==0 );
-** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
-** </pre></blockquote>)^
-**
-** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
-** macro.  ^The sqlite3_libversion() function returns a pointer to the
-** to the sqlite3_version[] string constant.  The sqlite3_libversion()
-** function is provided for use in DLLs since DLL users usually do not have
-** direct access to string constants within the DLL.  ^The
-** sqlite3_libversion_number() function returns an integer equal to
-** [SQLITE_VERSION_NUMBER].  ^(The sqlite3_sourceid() function returns 
-** a pointer to a string constant whose value is the same as the 
-** [SQLITE_SOURCE_ID] C preprocessor macro.  Except if SQLite is built
-** using an edited copy of [the amalgamation], then the last four characters
-** of the hash might be different from [SQLITE_SOURCE_ID].)^
-**
-** See also: [sqlite_version()] and [sqlite_source_id()].
-*/
-SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
-SQLITE_API const char *sqlite3_libversion(void);
-SQLITE_API const char *sqlite3_sourceid(void);
-SQLITE_API int sqlite3_libversion_number(void);
-
-/*
-** CAPI3REF: Run-Time Library Compilation Options Diagnostics
-**
-** ^The sqlite3_compileoption_used() function returns 0 or 1 
-** indicating whether the specified option was defined at 
-** compile time.  ^The SQLITE_ prefix may be omitted from the 
-** option name passed to sqlite3_compileoption_used().  
-**
-** ^The sqlite3_compileoption_get() function allows iterating
-** over the list of options that were defined at compile time by
-** returning the N-th compile time option string.  ^If N is out of range,
-** sqlite3_compileoption_get() returns a NULL pointer.  ^The SQLITE_ 
-** prefix is omitted from any strings returned by 
-** sqlite3_compileoption_get().
-**
-** ^Support for the diagnostic functions sqlite3_compileoption_used()
-** and sqlite3_compileoption_get() may be omitted by specifying the 
-** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
-**
-** See also: SQL functions [sqlite_compileoption_used()] and
-** [sqlite_compileoption_get()] and the [compile_options pragma].
-*/
-#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
-SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
-SQLITE_API const char *sqlite3_compileoption_get(int N);
-#else
-# define sqlite3_compileoption_used(X) 0
-# define sqlite3_compileoption_get(X)  ((void*)0)
-#endif
-
-/*
-** CAPI3REF: Test To See If The Library Is Threadsafe
-**
-** ^The sqlite3_threadsafe() function returns zero if and only if
-** SQLite was compiled with mutexing code omitted due to the
-** [SQLITE_THREADSAFE] compile-time option being set to 0.
-**
-** SQLite can be compiled with or without mutexes.  When
-** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
-** are enabled and SQLite is threadsafe.  When the
-** [SQLITE_THREADSAFE] macro is 0, 
-** the mutexes are omitted.  Without the mutexes, it is not safe
-** to use SQLite concurrently from more than one thread.
-**
-** Enabling mutexes incurs a measurable performance penalty.
-** So if speed is of utmost importance, it makes sense to disable
-** the mutexes.  But for maximum safety, mutexes should be enabled.
-** ^The default behavior is for mutexes to be enabled.
-**
-** This interface can be used by an application to make sure that the
-** version of SQLite that it is linking against was compiled with
-** the desired setting of the [SQLITE_THREADSAFE] macro.
-**
-** This interface only reports on the compile-time mutex setting
-** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
-** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
-** can be fully or partially disabled using a call to [sqlite3_config()]
-** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
-** or [SQLITE_CONFIG_SERIALIZED].  ^(The return value of the
-** sqlite3_threadsafe() function shows only the compile-time setting of
-** thread safety, not any run-time changes to that setting made by
-** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
-** is unchanged by calls to sqlite3_config().)^
-**
-** See the [threading mode] documentation for additional information.
-*/
-SQLITE_API int sqlite3_threadsafe(void);
-
-/*
-** CAPI3REF: Database Connection Handle
-** KEYWORDS: {database connection} {database connections}
-**
-** Each open SQLite database is represented by a pointer to an instance of
-** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
-** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
-** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
-** and [sqlite3_close_v2()] are its destructors.  There are many other
-** interfaces (such as
-** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
-** [sqlite3_busy_timeout()] to name but three) that are methods on an
-** sqlite3 object.
-*/
-typedef struct sqlite3 sqlite3;
-
-/*
-** CAPI3REF: 64-Bit Integer Types
-** KEYWORDS: sqlite_int64 sqlite_uint64
-**
-** Because there is no cross-platform way to specify 64-bit integer types
-** SQLite includes typedefs for 64-bit signed and unsigned integers.
-**
-** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
-** The sqlite_int64 and sqlite_uint64 types are supported for backwards
-** compatibility only.
-**
-** ^The sqlite3_int64 and sqlite_int64 types can store integer values
-** between -9223372036854775808 and +9223372036854775807 inclusive.  ^The
-** sqlite3_uint64 and sqlite_uint64 types can store integer values 
-** between 0 and +18446744073709551615 inclusive.
-*/
-#ifdef SQLITE_INT64_TYPE
-  typedef SQLITE_INT64_TYPE sqlite_int64;
-# ifdef SQLITE_UINT64_TYPE
-    typedef SQLITE_UINT64_TYPE sqlite_uint64;
-# else  
-    typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
-# endif
-#elif defined(_MSC_VER) || defined(__BORLANDC__)
-  typedef __int64 sqlite_int64;
-  typedef unsigned __int64 sqlite_uint64;
-#else
-  typedef long long int sqlite_int64;
-  typedef unsigned long long int sqlite_uint64;
-#endif
-typedef sqlite_int64 sqlite3_int64;
-typedef sqlite_uint64 sqlite3_uint64;
-
-/*
-** If compiling for a processor that lacks floating point support,
-** substitute integer for floating-point.
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# define double sqlite3_int64
-#endif
-
-/*
-** CAPI3REF: Closing A Database Connection
-** DESTRUCTOR: sqlite3
-**
-** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
-** for the [sqlite3] object.
-** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
-** the [sqlite3] object is successfully destroyed and all associated
-** resources are deallocated.
-**
-** Ideally, applications should [sqlite3_finalize | finalize] all
-** [prepared statements], [sqlite3_blob_close | close] all [BLOB handles], and 
-** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
-** with the [sqlite3] object prior to attempting to close the object.
-** ^If the database connection is associated with unfinalized prepared
-** statements, BLOB handlers, and/or unfinished sqlite3_backup objects then
-** sqlite3_close() will leave the database connection open and return
-** [SQLITE_BUSY]. ^If sqlite3_close_v2() is called with unfinalized prepared
-** statements, unclosed BLOB handlers, and/or unfinished sqlite3_backups,
-** it returns [SQLITE_OK] regardless, but instead of deallocating the database
-** connection immediately, it marks the database connection as an unusable
-** "zombie" and makes arrangements to automatically deallocate the database
-** connection after all prepared statements are finalized, all BLOB handles
-** are closed, and all backups have finished. The sqlite3_close_v2() interface
-** is intended for use with host languages that are garbage collected, and
-** where the order in which destructors are called is arbitrary.
-**
-** ^If an [sqlite3] object is destroyed while a transaction is open,
-** the transaction is automatically rolled back.
-**
-** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
-** must be either a NULL
-** pointer or an [sqlite3] object pointer obtained
-** from [sqlite3_open()], [sqlite3_open16()], or
-** [sqlite3_open_v2()], and not previously closed.
-** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
-** argument is a harmless no-op.
-*/
-SQLITE_API int sqlite3_close(sqlite3*);
-SQLITE_API int sqlite3_close_v2(sqlite3*);
-
-/*
-** The type for a callback function.
-** This is legacy and deprecated.  It is included for historical
-** compatibility and is not documented.
-*/
-typedef int (*sqlite3_callback)(void*,int,char**, char**);
-
-/*
-** CAPI3REF: One-Step Query Execution Interface
-** METHOD: sqlite3
-**
-** The sqlite3_exec() interface is a convenience wrapper around
-** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
-** that allows an application to run multiple statements of SQL
-** without having to use a lot of C code. 
-**
-** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
-** semicolon-separate SQL statements passed into its 2nd argument,
-** in the context of the [database connection] passed in as its 1st
-** argument.  ^If the callback function of the 3rd argument to
-** sqlite3_exec() is not NULL, then it is invoked for each result row
-** coming out of the evaluated SQL statements.  ^The 4th argument to
-** sqlite3_exec() is relayed through to the 1st argument of each
-** callback invocation.  ^If the callback pointer to sqlite3_exec()
-** is NULL, then no callback is ever invoked and result rows are
-** ignored.
-**
-** ^If an error occurs while evaluating the SQL statements passed into
-** sqlite3_exec(), then execution of the current statement stops and
-** subsequent statements are skipped.  ^If the 5th parameter to sqlite3_exec()
-** is not NULL then any error message is written into memory obtained
-** from [sqlite3_malloc()] and passed back through the 5th parameter.
-** To avoid memory leaks, the application should invoke [sqlite3_free()]
-** on error message strings returned through the 5th parameter of
-** sqlite3_exec() after the error message string is no longer needed.
-** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
-** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
-** NULL before returning.
-**
-** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
-** routine returns SQLITE_ABORT without invoking the callback again and
-** without running any subsequent SQL statements.
-**
-** ^The 2nd argument to the sqlite3_exec() callback function is the
-** number of columns in the result.  ^The 3rd argument to the sqlite3_exec()
-** callback is an array of pointers to strings obtained as if from
-** [sqlite3_column_text()], one for each column.  ^If an element of a
-** result row is NULL then the corresponding string pointer for the
-** sqlite3_exec() callback is a NULL pointer.  ^The 4th argument to the
-** sqlite3_exec() callback is an array of pointers to strings where each
-** entry represents the name of corresponding result column as obtained
-** from [sqlite3_column_name()].
-**
-** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
-** to an empty string, or a pointer that contains only whitespace and/or 
-** SQL comments, then no SQL statements are evaluated and the database
-** is not changed.
-**
-** Restrictions:
-**
-** <ul>
-** <li> The application must ensure that the 1st parameter to sqlite3_exec()
-**      is a valid and open [database connection].
-** <li> The application must not close the [database connection] specified by
-**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
-** <li> The application must not modify the SQL statement text passed into
-**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
-** </ul>
-*/
-SQLITE_API int sqlite3_exec(
-  sqlite3*,                                  /* An open database */
-  const char *sql,                           /* SQL to be evaluated */
-  int (*callback)(void*,int,char**,char**),  /* Callback function */
-  void *,                                    /* 1st argument to callback */
-  char **errmsg                              /* Error msg written here */
-);
-
-/*
-** CAPI3REF: Result Codes
-** KEYWORDS: {result code definitions}
-**
-** Many SQLite functions return an integer result code from the set shown
-** here in order to indicate success or failure.
-**
-** New error codes may be added in future versions of SQLite.
-**
-** See also: [extended result code definitions]
-*/
-#define SQLITE_OK           0   /* Successful result */
-/* beginning-of-error-codes */
-#define SQLITE_ERROR        1   /* Generic error */
-#define SQLITE_INTERNAL     2   /* Internal logic error in SQLite */
-#define SQLITE_PERM         3   /* Access permission denied */
-#define SQLITE_ABORT        4   /* Callback routine requested an abort */
-#define SQLITE_BUSY         5   /* The database file is locked */
-#define SQLITE_LOCKED       6   /* A table in the database is locked */
-#define SQLITE_NOMEM        7   /* A malloc() failed */
-#define SQLITE_READONLY     8   /* Attempt to write a readonly database */
-#define SQLITE_INTERRUPT    9   /* Operation terminated by sqlite3_interrupt()*/
-#define SQLITE_IOERR       10   /* Some kind of disk I/O error occurred */
-#define SQLITE_CORRUPT     11   /* The database disk image is malformed */
-#define SQLITE_NOTFOUND    12   /* Unknown opcode in sqlite3_file_control() */
-#define SQLITE_FULL        13   /* Insertion failed because database is full */
-#define SQLITE_CANTOPEN    14   /* Unable to open the database file */
-#define SQLITE_PROTOCOL    15   /* Database lock protocol error */
-#define SQLITE_EMPTY       16   /* Internal use only */
-#define SQLITE_SCHEMA      17   /* The database schema changed */
-#define SQLITE_TOOBIG      18   /* String or BLOB exceeds size limit */
-#define SQLITE_CONSTRAINT  19   /* Abort due to constraint violation */
-#define SQLITE_MISMATCH    20   /* Data type mismatch */
-#define SQLITE_MISUSE      21   /* Library used incorrectly */
-#define SQLITE_NOLFS       22   /* Uses OS features not supported on host */
-#define SQLITE_AUTH        23   /* Authorization denied */
-#define SQLITE_FORMAT      24   /* Not used */
-#define SQLITE_RANGE       25   /* 2nd parameter to sqlite3_bind out of range */
-#define SQLITE_NOTADB      26   /* File opened that is not a database file */
-#define SQLITE_NOTICE      27   /* Notifications from sqlite3_log() */
-#define SQLITE_WARNING     28   /* Warnings from sqlite3_log() */
-#define SQLITE_ROW         100  /* sqlite3_step() has another row ready */
-#define SQLITE_DONE        101  /* sqlite3_step() has finished executing */
-/* end-of-error-codes */
-
-/*
-** CAPI3REF: Extended Result Codes
-** KEYWORDS: {extended result code definitions}
-**
-** In its default configuration, SQLite API routines return one of 30 integer
-** [result codes].  However, experience has shown that many of
-** these result codes are too coarse-grained.  They do not provide as
-** much information about problems as programmers might like.  In an effort to
-** address this, newer versions of SQLite (version 3.3.8 [dateof:3.3.8]
-** and later) include
-** support for additional result codes that provide more detailed information
-** about errors. These [extended result codes] are enabled or disabled
-** on a per database connection basis using the
-** [sqlite3_extended_result_codes()] API.  Or, the extended code for
-** the most recent error can be obtained using
-** [sqlite3_extended_errcode()].
-*/
-#define SQLITE_ERROR_MISSING_COLLSEQ   (SQLITE_ERROR | (1<<8))
-#define SQLITE_ERROR_RETRY             (SQLITE_ERROR | (2<<8))
-#define SQLITE_ERROR_SNAPSHOT          (SQLITE_ERROR | (3<<8))
-#define SQLITE_IOERR_READ              (SQLITE_IOERR | (1<<8))
-#define SQLITE_IOERR_SHORT_READ        (SQLITE_IOERR | (2<<8))
-#define SQLITE_IOERR_WRITE             (SQLITE_IOERR | (3<<8))
-#define SQLITE_IOERR_FSYNC             (SQLITE_IOERR | (4<<8))
-#define SQLITE_IOERR_DIR_FSYNC         (SQLITE_IOERR | (5<<8))
-#define SQLITE_IOERR_TRUNCATE          (SQLITE_IOERR | (6<<8))
-#define SQLITE_IOERR_FSTAT             (SQLITE_IOERR | (7<<8))
-#define SQLITE_IOERR_UNLOCK            (SQLITE_IOERR | (8<<8))
-#define SQLITE_IOERR_RDLOCK            (SQLITE_IOERR | (9<<8))
-#define SQLITE_IOERR_DELETE            (SQLITE_IOERR | (10<<8))
-#define SQLITE_IOERR_BLOCKED           (SQLITE_IOERR | (11<<8))
-#define SQLITE_IOERR_NOMEM             (SQLITE_IOERR | (12<<8))
-#define SQLITE_IOERR_ACCESS            (SQLITE_IOERR | (13<<8))
-#define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
-#define SQLITE_IOERR_LOCK              (SQLITE_IOERR | (15<<8))
-#define SQLITE_IOERR_CLOSE             (SQLITE_IOERR | (16<<8))
-#define SQLITE_IOERR_DIR_CLOSE         (SQLITE_IOERR | (17<<8))
-#define SQLITE_IOERR_SHMOPEN           (SQLITE_IOERR | (18<<8))
-#define SQLITE_IOERR_SHMSIZE           (SQLITE_IOERR | (19<<8))
-#define SQLITE_IOERR_SHMLOCK           (SQLITE_IOERR | (20<<8))
-#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
-#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
-#define SQLITE_IOERR_DELETE_NOENT      (SQLITE_IOERR | (23<<8))
-#define SQLITE_IOERR_MMAP              (SQLITE_IOERR | (24<<8))
-#define SQLITE_IOERR_GETTEMPPATH       (SQLITE_IOERR | (25<<8))
-#define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
-#define SQLITE_IOERR_VNODE             (SQLITE_IOERR | (27<<8))
-#define SQLITE_IOERR_AUTH              (SQLITE_IOERR | (28<<8))
-#define SQLITE_IOERR_BEGIN_ATOMIC      (SQLITE_IOERR | (29<<8))
-#define SQLITE_IOERR_COMMIT_ATOMIC     (SQLITE_IOERR | (30<<8))
-#define SQLITE_IOERR_ROLLBACK_ATOMIC   (SQLITE_IOERR | (31<<8))
-#define SQLITE_IOERR_DATA              (SQLITE_IOERR | (32<<8))
-#define SQLITE_IOERR_CORRUPTFS         (SQLITE_IOERR | (33<<8))
-#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
-#define SQLITE_LOCKED_VTAB             (SQLITE_LOCKED |  (2<<8))
-#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
-#define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
-#define SQLITE_BUSY_TIMEOUT            (SQLITE_BUSY   |  (3<<8))
-#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
-#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
-#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
-#define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))
-#define SQLITE_CANTOPEN_DIRTYWAL       (SQLITE_CANTOPEN | (5<<8)) /* Not Used */
-#define SQLITE_CANTOPEN_SYMLINK        (SQLITE_CANTOPEN | (6<<8))
-#define SQLITE_CORRUPT_VTAB            (SQLITE_CORRUPT | (1<<8))
-#define SQLITE_CORRUPT_SEQUENCE        (SQLITE_CORRUPT | (2<<8))
-#define SQLITE_CORRUPT_INDEX           (SQLITE_CORRUPT | (3<<8))
-#define SQLITE_READONLY_RECOVERY       (SQLITE_READONLY | (1<<8))
-#define SQLITE_READONLY_CANTLOCK       (SQLITE_READONLY | (2<<8))
-#define SQLITE_READONLY_ROLLBACK       (SQLITE_READONLY | (3<<8))
-#define SQLITE_READONLY_DBMOVED        (SQLITE_READONLY | (4<<8))
-#define SQLITE_READONLY_CANTINIT       (SQLITE_READONLY | (5<<8))
-#define SQLITE_READONLY_DIRECTORY      (SQLITE_READONLY | (6<<8))
-#define SQLITE_ABORT_ROLLBACK          (SQLITE_ABORT | (2<<8))
-#define SQLITE_CONSTRAINT_CHECK        (SQLITE_CONSTRAINT | (1<<8))
-#define SQLITE_CONSTRAINT_COMMITHOOK   (SQLITE_CONSTRAINT | (2<<8))
-#define SQLITE_CONSTRAINT_FOREIGNKEY   (SQLITE_CONSTRAINT | (3<<8))
-#define SQLITE_CONSTRAINT_FUNCTION     (SQLITE_CONSTRAINT | (4<<8))
-#define SQLITE_CONSTRAINT_NOTNULL      (SQLITE_CONSTRAINT | (5<<8))
-#define SQLITE_CONSTRAINT_PRIMARYKEY   (SQLITE_CONSTRAINT | (6<<8))
-#define SQLITE_CONSTRAINT_TRIGGER      (SQLITE_CONSTRAINT | (7<<8))
-#define SQLITE_CONSTRAINT_UNIQUE       (SQLITE_CONSTRAINT | (8<<8))
-#define SQLITE_CONSTRAINT_VTAB         (SQLITE_CONSTRAINT | (9<<8))
-#define SQLITE_CONSTRAINT_ROWID        (SQLITE_CONSTRAINT |(10<<8))
-#define SQLITE_CONSTRAINT_PINNED       (SQLITE_CONSTRAINT |(11<<8))
-#define SQLITE_NOTICE_RECOVER_WAL      (SQLITE_NOTICE | (1<<8))
-#define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
-#define SQLITE_WARNING_AUTOINDEX       (SQLITE_WARNING | (1<<8))
-#define SQLITE_AUTH_USER               (SQLITE_AUTH | (1<<8))
-#define SQLITE_OK_LOAD_PERMANENTLY     (SQLITE_OK | (1<<8))
-#define SQLITE_OK_SYMLINK              (SQLITE_OK | (2<<8))
-
-/*
-** CAPI3REF: Flags For File Open Operations
-**
-** These bit values are intended for use in the
-** 3rd parameter to the [sqlite3_open_v2()] interface and
-** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
-*/
-#define SQLITE_OPEN_READONLY         0x00000001  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_READWRITE        0x00000002  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_CREATE           0x00000004  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_DELETEONCLOSE    0x00000008  /* VFS only */
-#define SQLITE_OPEN_EXCLUSIVE        0x00000010  /* VFS only */
-#define SQLITE_OPEN_AUTOPROXY        0x00000020  /* VFS only */
-#define SQLITE_OPEN_URI              0x00000040  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_MEMORY           0x00000080  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_MAIN_DB          0x00000100  /* VFS only */
-#define SQLITE_OPEN_TEMP_DB          0x00000200  /* VFS only */
-#define SQLITE_OPEN_TRANSIENT_DB     0x00000400  /* VFS only */
-#define SQLITE_OPEN_MAIN_JOURNAL     0x00000800  /* VFS only */
-#define SQLITE_OPEN_TEMP_JOURNAL     0x00001000  /* VFS only */
-#define SQLITE_OPEN_SUBJOURNAL       0x00002000  /* VFS only */
-#define SQLITE_OPEN_SUPER_JOURNAL    0x00004000  /* VFS only */
-#define SQLITE_OPEN_NOMUTEX          0x00008000  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_FULLMUTEX        0x00010000  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_SHAREDCACHE      0x00020000  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_PRIVATECACHE     0x00040000  /* Ok for sqlite3_open_v2() */
-#define SQLITE_OPEN_WAL              0x00080000  /* VFS only */
-#define SQLITE_OPEN_NOFOLLOW         0x01000000  /* Ok for sqlite3_open_v2() */
-
-/* Reserved:                         0x00F00000 */
-/* Legacy compatibility: */
-#define SQLITE_OPEN_MASTER_JOURNAL   0x00004000  /* VFS only */
-
-
-/*
-** CAPI3REF: Device Characteristics
-**
-** The xDeviceCharacteristics method of the [sqlite3_io_methods]
-** object returns an integer which is a vector of these
-** bit values expressing I/O characteristics of the mass storage
-** device that holds the file that the [sqlite3_io_methods]
-** refers to.
-**
-** The SQLITE_IOCAP_ATOMIC property means that all writes of
-** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
-** mean that writes of blocks that are nnn bytes in size and
-** are aligned to an address which is an integer multiple of
-** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
-** that when data is appended to a file, the data is appended
-** first then the size of the file is extended, never the other
-** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
-** information is written to disk in the same order as calls
-** to xWrite().  The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
-** after reboot following a crash or power loss, the only bytes in a
-** file that were written at the application level might have changed
-** and that adjacent bytes, even bytes within the same sector are
-** guaranteed to be unchanged.  The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
-** flag indicates that a file cannot be deleted when open.  The
-** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
-** read-only media and cannot be changed even by processes with
-** elevated privileges.
-**
-** The SQLITE_IOCAP_BATCH_ATOMIC property means that the underlying
-** filesystem supports doing multiple write operations atomically when those
-** write operations are bracketed by [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] and
-** [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE].
-*/
-#define SQLITE_IOCAP_ATOMIC                 0x00000001
-#define SQLITE_IOCAP_ATOMIC512              0x00000002
-#define SQLITE_IOCAP_ATOMIC1K               0x00000004
-#define SQLITE_IOCAP_ATOMIC2K               0x00000008
-#define SQLITE_IOCAP_ATOMIC4K               0x00000010
-#define SQLITE_IOCAP_ATOMIC8K               0x00000020
-#define SQLITE_IOCAP_ATOMIC16K              0x00000040
-#define SQLITE_IOCAP_ATOMIC32K              0x00000080
-#define SQLITE_IOCAP_ATOMIC64K              0x00000100
-#define SQLITE_IOCAP_SAFE_APPEND            0x00000200
-#define SQLITE_IOCAP_SEQUENTIAL             0x00000400
-#define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN  0x00000800
-#define SQLITE_IOCAP_POWERSAFE_OVERWRITE    0x00001000
-#define SQLITE_IOCAP_IMMUTABLE              0x00002000
-#define SQLITE_IOCAP_BATCH_ATOMIC           0x00004000
-
-/*
-** CAPI3REF: File Locking Levels
-**
-** SQLite uses one of these integer values as the second
-** argument to calls it makes to the xLock() and xUnlock() methods
-** of an [sqlite3_io_methods] object.
-*/
-#define SQLITE_LOCK_NONE          0
-#define SQLITE_LOCK_SHARED        1
-#define SQLITE_LOCK_RESERVED      2
-#define SQLITE_LOCK_PENDING       3
-#define SQLITE_LOCK_EXCLUSIVE     4
-
-/*
-** CAPI3REF: Synchronization Type Flags
-**
-** When SQLite invokes the xSync() method of an
-** [sqlite3_io_methods] object it uses a combination of
-** these integer values as the second argument.
-**
-** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
-** sync operation only needs to flush data to mass storage.  Inode
-** information need not be flushed. If the lower four bits of the flag
-** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
-** If the lower four bits equal SQLITE_SYNC_FULL, that means
-** to use Mac OS X style fullsync instead of fsync().
-**
-** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
-** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
-** settings.  The [synchronous pragma] determines when calls to the
-** xSync VFS method occur and applies uniformly across all platforms.
-** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
-** energetic or rigorous or forceful the sync operations are and
-** only make a difference on Mac OSX for the default SQLite code.
-** (Third-party VFS implementations might also make the distinction
-** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
-** operating systems natively supported by SQLite, only Mac OSX
-** cares about the difference.)
-*/
-#define SQLITE_SYNC_NORMAL        0x00002
-#define SQLITE_SYNC_FULL          0x00003
-#define SQLITE_SYNC_DATAONLY      0x00010
-
-/*
-** CAPI3REF: OS Interface Open File Handle
-**
-** An [sqlite3_file] object represents an open file in the 
-** [sqlite3_vfs | OS interface layer].  Individual OS interface
-** implementations will
-** want to subclass this object by appending additional fields
-** for their own use.  The pMethods entry is a pointer to an
-** [sqlite3_io_methods] object that defines methods for performing
-** I/O operations on the open file.
-*/
-typedef struct sqlite3_file sqlite3_file;
-struct sqlite3_file {
-  const struct sqlite3_io_methods *pMethods;  /* Methods for an open file */
-};
-
-/*
-** CAPI3REF: OS Interface File Virtual Methods Object
-**
-** Every file opened by the [sqlite3_vfs.xOpen] method populates an
-** [sqlite3_file] object (or, more commonly, a subclass of the
-** [sqlite3_file] object) with a pointer to an instance of this object.
-** This object defines the methods used to perform various operations
-** against the open file represented by the [sqlite3_file] object.
-**
-** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element 
-** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
-** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed.  The
-** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen]
-** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element
-** to NULL.
-**
-** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
-** [SQLITE_SYNC_FULL].  The first choice is the normal fsync().
-** The second choice is a Mac OS X style fullsync.  The [SQLITE_SYNC_DATAONLY]
-** flag may be ORed in to indicate that only the data of the file
-** and not its inode needs to be synced.
-**
-** The integer values to xLock() and xUnlock() are one of
-** <ul>
-** <li> [SQLITE_LOCK_NONE],
-** <li> [SQLITE_LOCK_SHARED],
-** <li> [SQLITE_LOCK_RESERVED],
-** <li> [SQLITE_LOCK_PENDING], or
-** <li> [SQLITE_LOCK_EXCLUSIVE].
-** </ul>
-** xLock() increases the lock. xUnlock() decreases the lock.
-** The xCheckReservedLock() method checks whether any database connection,
-** either in this process or in some other process, is holding a RESERVED,
-** PENDING, or EXCLUSIVE lock on the file.  It returns true
-** if such a lock exists and false otherwise.
-**
-** The xFileControl() method is a generic interface that allows custom
-** VFS implementations to directly control an open file using the
-** [sqlite3_file_control()] interface.  The second "op" argument is an
-** integer opcode.  The third argument is a generic pointer intended to
-** point to a structure that may contain arguments or space in which to
-** write return values.  Potential uses for xFileControl() might be
-** functions to enable blocking locks with timeouts, to change the
-** locking strategy (for example to use dot-file locks), to inquire
-** about the status of a lock, or to break stale locks.  The SQLite
-** core reserves all opcodes less than 100 for its own use.
-** A [file control opcodes | list of opcodes] less than 100 is available.
-** Applications that define a custom xFileControl method should use opcodes
-** greater than 100 to avoid conflicts.  VFS implementations should
-** return [SQLITE_NOTFOUND] for file control opcodes that they do not
-** recognize.
-**
-** The xSectorSize() method returns the sector size of the
-** device that underlies the file.  The sector size is the
-** minimum write that can be performed without disturbing
-** other bytes in the file.  The xDeviceCharacteristics()
-** method returns a bit vector describing behaviors of the
-** underlying device:
-**
-** <ul>
-** <li> [SQLITE_IOCAP_ATOMIC]
-** <li> [SQLITE_IOCAP_ATOMIC512]
-** <li> [SQLITE_IOCAP_ATOMIC1K]
-** <li> [SQLITE_IOCAP_ATOMIC2K]
-** <li> [SQLITE_IOCAP_ATOMIC4K]
-** <li> [SQLITE_IOCAP_ATOMIC8K]
-** <li> [SQLITE_IOCAP_ATOMIC16K]
-** <li> [SQLITE_IOCAP_ATOMIC32K]
-** <li> [SQLITE_IOCAP_ATOMIC64K]
-** <li> [SQLITE_IOCAP_SAFE_APPEND]
-** <li> [SQLITE_IOCAP_SEQUENTIAL]
-** <li> [SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN]
-** <li> [SQLITE_IOCAP_POWERSAFE_OVERWRITE]
-** <li> [SQLITE_IOCAP_IMMUTABLE]
-** <li> [SQLITE_IOCAP_BATCH_ATOMIC]
-** </ul>
-**
-** The SQLITE_IOCAP_ATOMIC property means that all writes of
-** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
-** mean that writes of blocks that are nnn bytes in size and
-** are aligned to an address which is an integer multiple of
-** nnn are atomic.  The SQLITE_IOCAP_SAFE_APPEND value means
-** that when data is appended to a file, the data is appended
-** first then the size of the file is extended, never the other
-** way around.  The SQLITE_IOCAP_SEQUENTIAL property means that
-** information is written to disk in the same order as calls
-** to xWrite().
-**
-** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
-** in the unread portions of the buffer with zeros.  A VFS that
-** fails to zero-fill short reads might seem to work.  However,
-** failure to zero-fill short reads will eventually lead to
-** database corruption.
-*/
-typedef struct sqlite3_io_methods sqlite3_io_methods;
-struct sqlite3_io_methods {
-  int iVersion;
-  int (*xClose)(sqlite3_file*);
-  int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
-  int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
-  int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
-  int (*xSync)(sqlite3_file*, int flags);
-  int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
-  int (*xLock)(sqlite3_file*, int);
-  int (*xUnlock)(sqlite3_file*, int);
-  int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
-  int (*xFileControl)(sqlite3_file*, int op, void *pArg);
-  int (*xSectorSize)(sqlite3_file*);
-  int (*xDeviceCharacteristics)(sqlite3_file*);
-  /* Methods above are valid for version 1 */
-  int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
-  int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
-  void (*xShmBarrier)(sqlite3_file*);
-  int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
-  /* Methods above are valid for version 2 */
-  int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
-  int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p);
-  /* Methods above are valid for version 3 */
-  /* Additional methods may be added in future releases */
-};
-
-/*
-** CAPI3REF: Standard File Control Opcodes
-** KEYWORDS: {file control opcodes} {file control opcode}
-**
-** These integer constants are opcodes for the xFileControl method
-** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
-** interface.
-**
-** <ul>
-** <li>[[SQLITE_FCNTL_LOCKSTATE]]
-** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
-** opcode causes the xFileControl method to write the current state of
-** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
-** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
-** into an integer that the pArg argument points to. This capability
-** is used during testing and is only available when the SQLITE_TEST
-** compile-time option is used.
-**
-** <li>[[SQLITE_FCNTL_SIZE_HINT]]
-** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
-** layer a hint of how large the database file will grow to be during the
-** current transaction.  This hint is not guaranteed to be accurate but it
-** is often close.  The underlying VFS might choose to preallocate database
-** file space based on this hint in order to help writes to the database
-** file run faster.
-**
-** <li>[[SQLITE_FCNTL_SIZE_LIMIT]]
-** The [SQLITE_FCNTL_SIZE_LIMIT] opcode is used by in-memory VFS that
-** implements [sqlite3_deserialize()] to set an upper bound on the size
-** of the in-memory database.  The argument is a pointer to a [sqlite3_int64].
-** If the integer pointed to is negative, then it is filled in with the
-** current limit.  Otherwise the limit is set to the larger of the value
-** of the integer pointed to and the current database size.  The integer
-** pointed to is set to the new limit.
-**
-** <li>[[SQLITE_FCNTL_CHUNK_SIZE]]
-** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
-** extends and truncates the database file in chunks of a size specified
-** by the user. The fourth argument to [sqlite3_file_control()] should 
-** point to an integer (type int) containing the new chunk-size to use
-** for the nominated database. Allocating database file space in large
-** chunks (say 1MB at a time), may reduce file-system fragmentation and
-** improve performance on some systems.
-**
-** <li>[[SQLITE_FCNTL_FILE_POINTER]]
-** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
-** to the [sqlite3_file] object associated with a particular database
-** connection.  See also [SQLITE_FCNTL_JOURNAL_POINTER].
-**
-** <li>[[SQLITE_FCNTL_JOURNAL_POINTER]]
-** The [SQLITE_FCNTL_JOURNAL_POINTER] opcode is used to obtain a pointer
-** to the [sqlite3_file] object associated with the journal file (either
-** the [rollback journal] or the [write-ahead log]) for a particular database
-** connection.  See also [SQLITE_FCNTL_FILE_POINTER].
-**
-** <li>[[SQLITE_FCNTL_SYNC_OMITTED]]
-** No longer in use.
-**
-** <li>[[SQLITE_FCNTL_SYNC]]
-** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and
-** sent to the VFS immediately before the xSync method is invoked on a
-** database file descriptor. Or, if the xSync method is not invoked 
-** because the user has configured SQLite with 
-** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place 
-** of the xSync method. In most cases, the pointer argument passed with
-** this file-control is NULL. However, if the database file is being synced
-** as part of a multi-database commit, the argument points to a nul-terminated
-** string containing the transactions super-journal file name. VFSes that 
-** do not need this signal should silently ignore this opcode. Applications 
-** should not call [sqlite3_file_control()] with this opcode as doing so may 
-** disrupt the operation of the specialized VFSes that do require it.  
-**
-** <li>[[SQLITE_FCNTL_COMMIT_PHASETWO]]
-** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite
-** and sent to the VFS after a transaction has been committed immediately
-** but before the database is unlocked. VFSes that do not need this signal
-** should silently ignore this opcode. Applications should not call
-** [sqlite3_file_control()] with this opcode as doing so may disrupt the 
-** operation of the specialized VFSes that do require it.  
-**
-** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]]
-** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
-** retry counts and intervals for certain disk I/O operations for the
-** windows [VFS] in order to provide robustness in the presence of
-** anti-virus programs.  By default, the windows VFS will retry file read,
-** file write, and file delete operations up to 10 times, with a delay
-** of 25 milliseconds before the first retry and with the delay increasing
-** by an additional 25 milliseconds with each subsequent retry.  This
-** opcode allows these two values (10 retries and 25 milliseconds of delay)
-** to be adjusted.  The values are changed for all database connections
-** within the same process.  The argument is a pointer to an array of two
-** integers where the first integer is the new retry count and the second
-** integer is the delay.  If either integer is negative, then the setting
-** is not changed but instead the prior value of that setting is written
-** into the array entry, allowing the current retry settings to be
-** interrogated.  The zDbName parameter is ignored.
-**
-** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
-** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
-** persistent [WAL | Write Ahead Log] setting.  By default, the auxiliary
-** write ahead log ([WAL file]) and shared memory
-** files used for transaction control
-** are automatically deleted when the latest connection to the database
-** closes.  Setting persistent WAL mode causes those files to persist after
-** close.  Persisting the files is useful when other processes that do not
-** have write permission on the directory containing the database file want
-** to read the database file, as the WAL and shared memory files must exist
-** in order for the database to be readable.  The fourth parameter to
-** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
-** That integer is 0 to disable persistent WAL mode or 1 to enable persistent
-** WAL mode.  If the integer is -1, then it is overwritten with the current
-** WAL persistence setting.
-**
-** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]]
-** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the
-** persistent "powersafe-overwrite" or "PSOW" setting.  The PSOW setting
-** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the
-** xDeviceCharacteristics methods. The fourth parameter to
-** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
-** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage
-** mode.  If the integer is -1, then it is overwritten with the current
-** zero-damage mode setting.
-**
-** <li>[[SQLITE_FCNTL_OVERWRITE]]
-** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening
-** a write transaction to indicate that, unless it is rolled back for some
-** reason, the entire database file will be overwritten by the current 
-** transaction. This is used by VACUUM operations.
-**
-** <li>[[SQLITE_FCNTL_VFSNAME]]
-** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of
-** all [VFSes] in the VFS stack.  The names are of all VFS shims and the
-** final bottom-level VFS are written into memory obtained from 
-** [sqlite3_malloc()] and the result is stored in the char* variable
-** that the fourth parameter of [sqlite3_file_control()] points to.
-** The caller is responsible for freeing the memory when done.  As with
-** all file-control actions, there is no guarantee that this will actually
-** do anything.  Callers should initialize the char* variable to a NULL
-** pointer in case this file-control is not implemented.  This file-control
-** is intended for diagnostic use only.
-**
-** <li>[[SQLITE_FCNTL_VFS_POINTER]]
-** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level
-** [VFSes] currently in use.  ^(The argument X in
-** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be
-** of type "[sqlite3_vfs] **".  This opcodes will set *X
-** to a pointer to the top-level VFS.)^
-** ^When there are multiple VFS shims in the stack, this opcode finds the
-** upper-most shim only.
-**
-** <li>[[SQLITE_FCNTL_PRAGMA]]
-** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] 
-** file control is sent to the open [sqlite3_file] object corresponding
-** to the database file to which the pragma statement refers. ^The argument
-** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
-** pointers to strings (char**) in which the second element of the array
-** is the name of the pragma and the third element is the argument to the
-** pragma or NULL if the pragma has no argument.  ^The handler for an
-** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element
-** of the char** argument point to a string obtained from [sqlite3_mprintf()]
-** or the equivalent and that string will become the result of the pragma or
-** the error message if the pragma fails. ^If the
-** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal 
-** [PRAGMA] processing continues.  ^If the [SQLITE_FCNTL_PRAGMA]
-** file control returns [SQLITE_OK], then the parser assumes that the
-** VFS has handled the PRAGMA itself and the parser generates a no-op
-** prepared statement if result string is NULL, or that returns a copy
-** of the result string if the string is non-NULL.
-** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
-** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
-** that the VFS encountered an error while handling the [PRAGMA] and the
-** compilation of the PRAGMA fails with an error.  ^The [SQLITE_FCNTL_PRAGMA]
-** file control occurs at the beginning of pragma statement analysis and so
-** it is able to override built-in [PRAGMA] statements.
-**
-** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
-** ^The [SQLITE_FCNTL_BUSYHANDLER]
-** file-control may be invoked by SQLite on the database file handle
-** shortly after it is opened in order to provide a custom VFS with access
-** to the connection's busy-handler callback. The argument is of type (void**)
-** - an array of two (void *) values. The first (void *) actually points
-** to a function of type (int (*)(void *)). In order to invoke the connection's
-** busy-handler, this function should be invoked with the second (void *) in
-** the array as the only argument. If it returns non-zero, then the operation
-** should be retried. If it returns zero, the custom VFS should abandon the
-** current operation.
-**
-** <li>[[SQLITE_FCNTL_TEMPFILENAME]]
-** ^Applications can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control
-** to have SQLite generate a
-** temporary filename using the same algorithm that is followed to generate
-** temporary filenames for TEMP tables and other internal uses.  The
-** argument should be a char** which will be filled with the filename
-** written into memory obtained from [sqlite3_malloc()].  The caller should
-** invoke [sqlite3_free()] on the result to avoid a memory leak.
-**
-** <li>[[SQLITE_FCNTL_MMAP_SIZE]]
-** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the
-** maximum number of bytes that will be used for memory-mapped I/O.
-** The argument is a pointer to a value of type sqlite3_int64 that
-** is an advisory maximum number of bytes in the file to memory map.  The
-** pointer is overwritten with the old value.  The limit is not changed if
-** the value originally pointed to is negative, and so the current limit 
-** can be queried by passing in a pointer to a negative number.  This
-** file-control is used internally to implement [PRAGMA mmap_size].
-**
-** <li>[[SQLITE_FCNTL_TRACE]]
-** The [SQLITE_FCNTL_TRACE] file control provides advisory information
-** to the VFS about what the higher layers of the SQLite stack are doing.
-** This file control is used by some VFS activity tracing [shims].
-** The argument is a zero-terminated string.  Higher layers in the
-** SQLite stack may generate instances of this file control if
-** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled.
-**
-** <li>[[SQLITE_FCNTL_HAS_MOVED]]
-** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a
-** pointer to an integer and it writes a boolean into that integer depending
-** on whether or not the file has been renamed, moved, or deleted since it
-** was first opened.
-**
-** <li>[[SQLITE_FCNTL_WIN32_GET_HANDLE]]
-** The [SQLITE_FCNTL_WIN32_GET_HANDLE] opcode can be used to obtain the
-** underlying native file handle associated with a file handle.  This file
-** control interprets its argument as a pointer to a native file handle and
-** writes the resulting value there.
-**
-** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
-** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging.  This
-** opcode causes the xFileControl method to swap the file handle with the one
-** pointed to by the pArg argument.  This capability is used during testing
-** and only needs to be supported when SQLITE_TEST is defined.
-**
-** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
-** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
-** be advantageous to block on the next WAL lock if the lock is not immediately
-** available.  The WAL subsystem issues this signal during rare
-** circumstances in order to fix a problem with priority inversion.
-** Applications should <em>not</em> use this file-control.
-**
-** <li>[[SQLITE_FCNTL_ZIPVFS]]
-** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other
-** VFS should return SQLITE_NOTFOUND for this opcode.
-**
-** <li>[[SQLITE_FCNTL_RBU]]
-** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by
-** the RBU extension only.  All other VFS should return SQLITE_NOTFOUND for
-** this opcode.  
-**
-** <li>[[SQLITE_FCNTL_BEGIN_ATOMIC_WRITE]]
-** If the [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] opcode returns SQLITE_OK, then
-** the file descriptor is placed in "batch write mode", which
-** means all subsequent write operations will be deferred and done
-** atomically at the next [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE].  Systems
-** that do not support batch atomic writes will return SQLITE_NOTFOUND.
-** ^Following a successful SQLITE_FCNTL_BEGIN_ATOMIC_WRITE and prior to
-** the closing [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] or
-** [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE], SQLite will make
-** no VFS interface calls on the same [sqlite3_file] file descriptor
-** except for calls to the xWrite method and the xFileControl method
-** with [SQLITE_FCNTL_SIZE_HINT].
-**
-** <li>[[SQLITE_FCNTL_COMMIT_ATOMIC_WRITE]]
-** The [SQLITE_FCNTL_COMMIT_ATOMIC_WRITE] opcode causes all write
-** operations since the previous successful call to 
-** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be performed atomically.
-** This file control returns [SQLITE_OK] if and only if the writes were
-** all performed successfully and have been committed to persistent storage.
-** ^Regardless of whether or not it is successful, this file control takes
-** the file descriptor out of batch write mode so that all subsequent
-** write operations are independent.
-** ^SQLite will never invoke SQLITE_FCNTL_COMMIT_ATOMIC_WRITE without
-** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
-**
-** <li>[[SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE]]
-** The [SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE] opcode causes all write
-** operations since the previous successful call to 
-** [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE] to be rolled back.
-** ^This file control takes the file descriptor out of batch write mode
-** so that all subsequent write operations are independent.
-** ^SQLite will never invoke SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE without
-** a prior successful call to [SQLITE_FCNTL_BEGIN_ATOMIC_WRITE].
-**
-** <li>[[SQLITE_FCNTL_LOCK_TIMEOUT]]
-** The [SQLITE_FCNTL_LOCK_TIMEOUT] opcode is used to configure a VFS
-** to block for up to M milliseconds before failing when attempting to 
-** obtain a file lock using the xLock or xShmLock methods of the VFS. 
-** The parameter is a pointer to a 32-bit signed integer that contains
-** the value that M is to be set to. Before returning, the 32-bit signed
-** integer is overwritten with the previous value of M.
-**
-** <li>[[SQLITE_FCNTL_DATA_VERSION]]
-** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
-** a database file.  The argument is a pointer to a 32-bit unsigned integer.
-** The "data version" for the pager is written into the pointer.  The
-** "data version" changes whenever any change occurs to the corresponding
-** database file, either through SQL statements on the same database
-** connection or through transactions committed by separate database
-** connections possibly in other processes. The [sqlite3_total_changes()]
-** interface can be used to find if any database on the connection has changed,
-** but that interface responds to changes on TEMP as well as MAIN and does
-** not provide a mechanism to detect changes to MAIN only.  Also, the
-** [sqlite3_total_changes()] interface responds to internal changes only and
-** omits changes made by other database connections.  The
-** [PRAGMA data_version] command provides a mechanism to detect changes to
-** a single attached database that occur due to other database connections,
-** but omits changes implemented by the database connection on which it is
-** called.  This file control is the only mechanism to detect changes that
-** happen either internally or externally and that are associated with
-** a particular attached database.
-**
-** <li>[[SQLITE_FCNTL_CKPT_START]]
-** The [SQLITE_FCNTL_CKPT_START] opcode is invoked from within a checkpoint
-** in wal mode before the client starts to copy pages from the wal
-** file to the database file.
-**
-** <li>[[SQLITE_FCNTL_CKPT_DONE]]
-** The [SQLITE_FCNTL_CKPT_DONE] opcode is invoked from within a checkpoint
-** in wal mode after the client has finished copying pages from the wal
-** file to the database file, but before the *-shm file is updated to
-** record the fact that the pages have been checkpointed.
-** </ul>
-*/
-#define SQLITE_FCNTL_LOCKSTATE               1
-#define SQLITE_FCNTL_GET_LOCKPROXYFILE       2
-#define SQLITE_FCNTL_SET_LOCKPROXYFILE       3
-#define SQLITE_FCNTL_LAST_ERRNO              4
-#define SQLITE_FCNTL_SIZE_HINT               5
-#define SQLITE_FCNTL_CHUNK_SIZE              6
-#define SQLITE_FCNTL_FILE_POINTER            7
-#define SQLITE_FCNTL_SYNC_OMITTED            8
-#define SQLITE_FCNTL_WIN32_AV_RETRY          9
-#define SQLITE_FCNTL_PERSIST_WAL            10
-#define SQLITE_FCNTL_OVERWRITE              11
-#define SQLITE_FCNTL_VFSNAME                12
-#define SQLITE_FCNTL_POWERSAFE_OVERWRITE    13
-#define SQLITE_FCNTL_PRAGMA                 14
-#define SQLITE_FCNTL_BUSYHANDLER            15
-#define SQLITE_FCNTL_TEMPFILENAME           16
-#define SQLITE_FCNTL_MMAP_SIZE              18
-#define SQLITE_FCNTL_TRACE                  19
-#define SQLITE_FCNTL_HAS_MOVED              20
-#define SQLITE_FCNTL_SYNC                   21
-#define SQLITE_FCNTL_COMMIT_PHASETWO        22
-#define SQLITE_FCNTL_WIN32_SET_HANDLE       23
-#define SQLITE_FCNTL_WAL_BLOCK              24
-#define SQLITE_FCNTL_ZIPVFS                 25
-#define SQLITE_FCNTL_RBU                    26
-#define SQLITE_FCNTL_VFS_POINTER            27
-#define SQLITE_FCNTL_JOURNAL_POINTER        28
-#define SQLITE_FCNTL_WIN32_GET_HANDLE       29
-#define SQLITE_FCNTL_PDB                    30
-#define SQLITE_FCNTL_BEGIN_ATOMIC_WRITE     31
-#define SQLITE_FCNTL_COMMIT_ATOMIC_WRITE    32
-#define SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE  33
-#define SQLITE_FCNTL_LOCK_TIMEOUT           34
-#define SQLITE_FCNTL_DATA_VERSION           35
-#define SQLITE_FCNTL_SIZE_LIMIT             36
-#define SQLITE_FCNTL_CKPT_DONE              37
-#define SQLITE_FCNTL_RESERVE_BYTES          38
-#define SQLITE_FCNTL_CKPT_START             39
-
-/* deprecated names */
-#define SQLITE_GET_LOCKPROXYFILE      SQLITE_FCNTL_GET_LOCKPROXYFILE
-#define SQLITE_SET_LOCKPROXYFILE      SQLITE_FCNTL_SET_LOCKPROXYFILE
-#define SQLITE_LAST_ERRNO             SQLITE_FCNTL_LAST_ERRNO
-
-
-/*
-** CAPI3REF: Mutex Handle
-**
-** The mutex module within SQLite defines [sqlite3_mutex] to be an
-** abstract type for a mutex object.  The SQLite core never looks
-** at the internal representation of an [sqlite3_mutex].  It only
-** deals with pointers to the [sqlite3_mutex] object.
-**
-** Mutexes are created using [sqlite3_mutex_alloc()].
-*/
-typedef struct sqlite3_mutex sqlite3_mutex;
-
-/*
-** CAPI3REF: Loadable Extension Thunk
-**
-** A pointer to the opaque sqlite3_api_routines structure is passed as
-** the third parameter to entry points of [loadable extensions].  This
-** structure must be typedefed in order to work around compiler warnings
-** on some platforms.
-*/
-typedef struct sqlite3_api_routines sqlite3_api_routines;
-
-/*
-** CAPI3REF: OS Interface Object
-**
-** An instance of the sqlite3_vfs object defines the interface between
-** the SQLite core and the underlying operating system.  The "vfs"
-** in the name of the object stands for "virtual file system".  See
-** the [VFS | VFS documentation] for further information.
-**
-** The VFS interface is sometimes extended by adding new methods onto
-** the end.  Each time such an extension occurs, the iVersion field
-** is incremented.  The iVersion value started out as 1 in
-** SQLite [version 3.5.0] on [dateof:3.5.0], then increased to 2
-** with SQLite [version 3.7.0] on [dateof:3.7.0], and then increased
-** to 3 with SQLite [version 3.7.6] on [dateof:3.7.6].  Additional fields
-** may be appended to the sqlite3_vfs object and the iVersion value
-** may increase again in future versions of SQLite.
-** Note that due to an oversight, the structure
-** of the sqlite3_vfs object changed in the transition from
-** SQLite [version 3.5.9] to [version 3.6.0] on [dateof:3.6.0]
-** and yet the iVersion field was not increased.
-**
-** The szOsFile field is the size of the subclassed [sqlite3_file]
-** structure used by this VFS.  mxPathname is the maximum length of
-** a pathname in this VFS.
-**
-** Registered sqlite3_vfs objects are kept on a linked list formed by
-** the pNext pointer.  The [sqlite3_vfs_register()]
-** and [sqlite3_vfs_unregister()] interfaces manage this list
-** in a thread-safe way.  The [sqlite3_vfs_find()] interface
-** searches the list.  Neither the application code nor the VFS
-** implementation should use the pNext pointer.
-**
-** The pNext field is the only field in the sqlite3_vfs
-** structure that SQLite will ever modify.  SQLite will only access
-** or modify this field while holding a particular static mutex.
-** The application should never modify anything within the sqlite3_vfs
-** object once the object has been registered.
-**
-** The zName field holds the name of the VFS module.  The name must
-** be unique across all VFS modules.
-**
-** [[sqlite3_vfs.xOpen]]
-** ^SQLite guarantees that the zFilename parameter to xOpen
-** is either a NULL pointer or string obtained
-** from xFullPathname() with an optional suffix added.
-** ^If a suffix is added to the zFilename parameter, it will
-** consist of a single "-" character followed by no more than
-** 11 alphanumeric and/or "-" characters.
-** ^SQLite further guarantees that
-** the string will be valid and unchanged until xClose() is
-** called. Because of the previous sentence,
-** the [sqlite3_file] can safely store a pointer to the
-** filename if it needs to remember the filename for some reason.
-** If the zFilename parameter to xOpen is a NULL pointer then xOpen
-** must invent its own temporary name for the file.  ^Whenever the 
-** xFilename parameter is NULL it will also be the case that the
-** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
-**
-** The flags argument to xOpen() includes all bits set in
-** the flags argument to [sqlite3_open_v2()].  Or if [sqlite3_open()]
-** or [sqlite3_open16()] is used, then flags includes at least
-** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]. 
-** If xOpen() opens a file read-only then it sets *pOutFlags to
-** include [SQLITE_OPEN_READONLY].  Other bits in *pOutFlags may be set.
-**
-** ^(SQLite will also add one of the following flags to the xOpen()
-** call, depending on the object being opened:
-**
-** <ul>
-** <li>  [SQLITE_OPEN_MAIN_DB]
-** <li>  [SQLITE_OPEN_MAIN_JOURNAL]
-** <li>  [SQLITE_OPEN_TEMP_DB]
-** <li>  [SQLITE_OPEN_TEMP_JOURNAL]
-** <li>  [SQLITE_OPEN_TRANSIENT_DB]
-** <li>  [SQLITE_OPEN_SUBJOURNAL]
-** <li>  [SQLITE_OPEN_SUPER_JOURNAL]
-** <li>  [SQLITE_OPEN_WAL]
-** </ul>)^
-**
-** The file I/O implementation can use the object type flags to
-** change the way it deals with files.  For example, an application
-** that does not care about crash recovery or rollback might make
-** the open of a journal file a no-op.  Writes to this journal would
-** also be no-ops, and any attempt to read the journal would return
-** SQLITE_IOERR.  Or the implementation might recognize that a database
-** file will be doing page-aligned sector reads and writes in a random
-** order and set up its I/O subsystem accordingly.
-**
-** SQLite might also add one of the following flags to the xOpen method:
-**
-** <ul>
-** <li> [SQLITE_OPEN_DELETEONCLOSE]
-** <li> [SQLITE_OPEN_EXCLUSIVE]
-** </ul>
-**
-** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
-** deleted when it is closed.  ^The [SQLITE_OPEN_DELETEONCLOSE]
-** will be set for TEMP databases and their journals, transient
-** databases, and subjournals.
-**
-** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
-** with the [SQLITE_OPEN_CREATE] flag, which are both directly
-** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
-** API.  The SQLITE_OPEN_EXCLUSIVE flag, when paired with the 
-** SQLITE_OPEN_CREATE, is used to indicate that file should always
-** be created, and that it is an error if it already exists.
-** It is <i>not</i> used to indicate the file should be opened 
-** for exclusive access.
-**
-** ^At least szOsFile bytes of memory are allocated by SQLite
-** to hold the [sqlite3_file] structure passed as the third
-** argument to xOpen.  The xOpen method does not have to
-** allocate the structure; it should just fill it in.  Note that
-** the xOpen method must set the sqlite3_file.pMethods to either
-** a valid [sqlite3_io_methods] object or to NULL.  xOpen must do
-** this even if the open fails.  SQLite expects that the sqlite3_file.pMethods
-** element will be valid after xOpen returns regardless of the success
-** or failure of the xOpen call.
-**
-** [[sqlite3_vfs.xAccess]]
-** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
-** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
-** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
-** to test whether a file is at least readable.  The SQLITE_ACCESS_READ
-** flag is never actually used and is not implemented in the built-in
-** VFSes of SQLite.  The file is named by the second argument and can be a
-** directory. The xAccess method returns [SQLITE_OK] on success or some
-** non-zero error code if there is an I/O error or if the name of
-** the file given in the second argument is illegal.  If SQLITE_OK
-** is returned, then non-zero or zero is written into *pResOut to indicate
-** whether or not the file is accessible.  
-**
-** ^SQLite will always allocate at least mxPathname+1 bytes for the
-** output buffer xFullPathname.  The exact size of the output buffer
-** is also passed as a parameter to both  methods. If the output buffer
-** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
-** handled as a fatal error by SQLite, vfs implementations should endeavor
-** to prevent this by setting mxPathname to a sufficiently large value.
-**
-** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
-** interfaces are not strictly a part of the filesystem, but they are
-** included in the VFS structure for completeness.
-** The xRandomness() function attempts to return nBytes bytes
-** of good-quality randomness into zOut.  The return value is
-** the actual number of bytes of randomness obtained.
-** The xSleep() method causes the calling thread to sleep for at
-** least the number of microseconds given.  ^The xCurrentTime()
-** method returns a Julian Day Number for the current date and time as
-** a floating point value.
-** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
-** Day Number multiplied by 86400000 (the number of milliseconds in 
-** a 24-hour day).  
-** ^SQLite will use the xCurrentTimeInt64() method to get the current
-** date and time if that method is available (if iVersion is 2 or 
-** greater and the function pointer is not NULL) and will fall back
-** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
-**
-** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
-** are not used by the SQLite core.  These optional interfaces are provided
-** by some VFSes to facilitate testing of the VFS code. By overriding 
-** system calls with functions under its control, a test program can
-** simulate faults and error conditions that would otherwise be difficult
-** or impossible to induce.  The set of system calls that can be overridden
-** varies from one VFS to another, and from one version of the same VFS to the
-** next.  Applications that use these interfaces must be prepared for any
-** or all of these interfaces to be NULL or for their behavior to change
-** from one release to the next.  Applications must not attempt to access
-** any of these methods if the iVersion of the VFS is less than 3.
-*/
-typedef struct sqlite3_vfs sqlite3_vfs;
-typedef void (*sqlite3_syscall_ptr)(void);
-struct sqlite3_vfs {
-  int iVersion;            /* Structure version number (currently 3) */
-  int szOsFile;            /* Size of subclassed sqlite3_file */
-  int mxPathname;          /* Maximum file pathname length */
-  sqlite3_vfs *pNext;      /* Next registered VFS */
-  const char *zName;       /* Name of this virtual file system */
-  void *pAppData;          /* Pointer to application-specific data */
-  int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
-               int flags, int *pOutFlags);
-  int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
-  int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
-  int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
-  void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
-  void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
-  void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
-  void (*xDlClose)(sqlite3_vfs*, void*);
-  int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
-  int (*xSleep)(sqlite3_vfs*, int microseconds);
-  int (*xCurrentTime)(sqlite3_vfs*, double*);
-  int (*xGetLastError)(sqlite3_vfs*, int, char *);
-  /*
-  ** The methods above are in version 1 of the sqlite_vfs object
-  ** definition.  Those that follow are added in version 2 or later
-  */
-  int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
-  /*
-  ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
-  ** Those below are for version 3 and greater.
-  */
-  int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
-  sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
-  const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
-  /*
-  ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
-  ** New fields may be appended in future versions.  The iVersion
-  ** value will increment whenever this happens. 
-  */
-};
-
-/*
-** CAPI3REF: Flags for the xAccess VFS method
-**
-** These integer constants can be used as the third parameter to
-** the xAccess method of an [sqlite3_vfs] object.  They determine
-** what kind of permissions the xAccess method is looking for.
-** With SQLITE_ACCESS_EXISTS, the xAccess method
-** simply checks whether the file exists.
-** With SQLITE_ACCESS_READWRITE, the xAccess method
-** checks whether the named directory is both readable and writable
-** (in other words, if files can be added, removed, and renamed within
-** the directory).
-** The SQLITE_ACCESS_READWRITE constant is currently used only by the
-** [temp_store_directory pragma], though this could change in a future
-** release of SQLite.
-** With SQLITE_ACCESS_READ, the xAccess method
-** checks whether the file is readable.  The SQLITE_ACCESS_READ constant is
-** currently unused, though it might be used in a future release of
-** SQLite.
-*/
-#define SQLITE_ACCESS_EXISTS    0
-#define SQLITE_ACCESS_READWRITE 1   /* Used by PRAGMA temp_store_directory */
-#define SQLITE_ACCESS_READ      2   /* Unused */
-
-/*
-** CAPI3REF: Flags for the xShmLock VFS method
-**
-** These integer constants define the various locking operations
-** allowed by the xShmLock method of [sqlite3_io_methods].  The
-** following are the only legal combinations of flags to the
-** xShmLock method:
-**
-** <ul>
-** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
-** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
-** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
-** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
-** </ul>
-**
-** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
-** was given on the corresponding lock.  
-**
-** The xShmLock method can transition between unlocked and SHARED or
-** between unlocked and EXCLUSIVE.  It cannot transition between SHARED
-** and EXCLUSIVE.
-*/
-#define SQLITE_SHM_UNLOCK       1
-#define SQLITE_SHM_LOCK         2
-#define SQLITE_SHM_SHARED       4
-#define SQLITE_SHM_EXCLUSIVE    8
-
-/*
-** CAPI3REF: Maximum xShmLock index
-**
-** The xShmLock method on [sqlite3_io_methods] may use values
-** between 0 and this upper bound as its "offset" argument.
-** The SQLite core will never attempt to acquire or release a
-** lock outside of this range
-*/
-#define SQLITE_SHM_NLOCK        8
-
-
-/*
-** CAPI3REF: Initialize The SQLite Library
-**
-** ^The sqlite3_initialize() routine initializes the
-** SQLite library.  ^The sqlite3_shutdown() routine
-** deallocates any resources that were allocated by sqlite3_initialize().
-** These routines are designed to aid in process initialization and
-** shutdown on embedded systems.  Workstation applications using
-** SQLite normally do not need to invoke either of these routines.
-**
-** A call to sqlite3_initialize() is an "effective" call if it is
-** the first time sqlite3_initialize() is invoked during the lifetime of
-** the process, or if it is the first time sqlite3_initialize() is invoked
-** following a call to sqlite3_shutdown().  ^(Only an effective call
-** of sqlite3_initialize() does any initialization.  All other calls
-** are harmless no-ops.)^
-**
-** A call to sqlite3_shutdown() is an "effective" call if it is the first
-** call to sqlite3_shutdown() since the last sqlite3_initialize().  ^(Only
-** an effective call to sqlite3_shutdown() does any deinitialization.
-** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
-**
-** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
-** is not.  The sqlite3_shutdown() interface must only be called from a
-** single thread.  All open [database connections] must be closed and all
-** other SQLite resources must be deallocated prior to invoking
-** sqlite3_shutdown().
-**
-** Among other things, ^sqlite3_initialize() will invoke
-** sqlite3_os_init().  Similarly, ^sqlite3_shutdown()
-** will invoke sqlite3_os_end().
-**
-** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
-** ^If for some reason, sqlite3_initialize() is unable to initialize
-** the library (perhaps it is unable to allocate a needed resource such
-** as a mutex) it returns an [error code] other than [SQLITE_OK].
-**
-** ^The sqlite3_initialize() routine is called internally by many other
-** SQLite interfaces so that an application usually does not need to
-** invoke sqlite3_initialize() directly.  For example, [sqlite3_open()]
-** calls sqlite3_initialize() so the SQLite library will be automatically
-** initialized when [sqlite3_open()] is called if it has not be initialized
-** already.  ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
-** compile-time option, then the automatic calls to sqlite3_initialize()
-** are omitted and the application must call sqlite3_initialize() directly
-** prior to using any other SQLite interface.  For maximum portability,
-** it is recommended that applications always invoke sqlite3_initialize()
-** directly prior to using any other SQLite interface.  Future releases
-** of SQLite may require this.  In other words, the behavior exhibited
-** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
-** default behavior in some future release of SQLite.
-**
-** The sqlite3_os_init() routine does operating-system specific
-** initialization of the SQLite library.  The sqlite3_os_end()
-** routine undoes the effect of sqlite3_os_init().  Typical tasks
-** performed by these routines include allocation or deallocation
-** of static resources, initialization of global variables,
-** setting up a default [sqlite3_vfs] module, or setting up
-** a default configuration using [sqlite3_config()].
-**
-** The application should never invoke either sqlite3_os_init()
-** or sqlite3_os_end() directly.  The application should only invoke
-** sqlite3_initialize() and sqlite3_shutdown().  The sqlite3_os_init()
-** interface is called automatically by sqlite3_initialize() and
-** sqlite3_os_end() is called by sqlite3_shutdown().  Appropriate
-** implementations for sqlite3_os_init() and sqlite3_os_end()
-** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
-** When [custom builds | built for other platforms]
-** (using the [SQLITE_OS_OTHER=1] compile-time
-** option) the application must supply a suitable implementation for
-** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
-** implementation of sqlite3_os_init() or sqlite3_os_end()
-** must return [SQLITE_OK] on success and some other [error code] upon
-** failure.
-*/
-SQLITE_API int sqlite3_initialize(void);
-SQLITE_API int sqlite3_shutdown(void);
-SQLITE_API int sqlite3_os_init(void);
-SQLITE_API int sqlite3_os_end(void);
-
-/*
-** CAPI3REF: Configuring The SQLite Library
-**
-** The sqlite3_config() interface is used to make global configuration
-** changes to SQLite in order to tune SQLite to the specific needs of
-** the application.  The default configuration is recommended for most
-** applications and so this routine is usually not necessary.  It is
-** provided to support rare applications with unusual needs.
-**
-** <b>The sqlite3_config() interface is not threadsafe. The application
-** must ensure that no other SQLite interfaces are invoked by other
-** threads while sqlite3_config() is running.</b>
-**
-** The sqlite3_config() interface
-** may only be invoked prior to library initialization using
-** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
-** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
-** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
-** Note, however, that ^sqlite3_config() can be called as part of the
-** implementation of an application-defined [sqlite3_os_init()].
-**
-** The first argument to sqlite3_config() is an integer
-** [configuration option] that determines
-** what property of SQLite is to be configured.  Subsequent arguments
-** vary depending on the [configuration option]
-** in the first argument.
-**
-** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
-** ^If the option is unknown or SQLite is unable to set the option
-** then this routine returns a non-zero [error code].
-*/
-SQLITE_API int sqlite3_config(int, ...);
-
-/*
-** CAPI3REF: Configure database connections
-** METHOD: sqlite3
-**
-** The sqlite3_db_config() interface is used to make configuration
-** changes to a [database connection].  The interface is similar to
-** [sqlite3_config()] except that the changes apply to a single
-** [database connection] (specified in the first argument).
-**
-** The second argument to sqlite3_db_config(D,V,...)  is the
-** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code 
-** that indicates what aspect of the [database connection] is being configured.
-** Subsequent arguments vary depending on the configuration verb.
-**
-** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
-** the call is considered successful.
-*/
-SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);
-
-/*
-** CAPI3REF: Memory Allocation Routines
-**
-** An instance of this object defines the interface between SQLite
-** and low-level memory allocation routines.
-**
-** This object is used in only one place in the SQLite interface.
-** A pointer to an instance of this object is the argument to
-** [sqlite3_config()] when the configuration option is
-** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].  
-** By creating an instance of this object
-** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
-** during configuration, an application can specify an alternative
-** memory allocation subsystem for SQLite to use for all of its
-** dynamic memory needs.
-**
-** Note that SQLite comes with several [built-in memory allocators]
-** that are perfectly adequate for the overwhelming majority of applications
-** and that this object is only useful to a tiny minority of applications
-** with specialized memory allocation requirements.  This object is
-** also used during testing of SQLite in order to specify an alternative
-** memory allocator that simulates memory out-of-memory conditions in
-** order to verify that SQLite recovers gracefully from such
-** conditions.
-**
-** The xMalloc, xRealloc, and xFree methods must work like the
-** malloc(), realloc() and free() functions from the standard C library.
-** ^SQLite guarantees that the second argument to
-** xRealloc is always a value returned by a prior call to xRoundup.
-**
-** xSize should return the allocated size of a memory allocation
-** previously obtained from xMalloc or xRealloc.  The allocated size
-** is always at least as big as the requested size but may be larger.
-**
-** The xRoundup method returns what would be the allocated size of
-** a memory allocation given a particular requested size.  Most memory
-** allocators round up memory allocations at least to the next multiple
-** of 8.  Some allocators round up to a larger multiple or to a power of 2.
-** Every memory allocation request coming in through [sqlite3_malloc()]
-** or [sqlite3_realloc()] first calls xRoundup.  If xRoundup returns 0, 
-** that causes the corresponding memory allocation to fail.
-**
-** The xInit method initializes the memory allocator.  For example,
-** it might allocate any required mutexes or initialize internal data
-** structures.  The xShutdown method is invoked (indirectly) by
-** [sqlite3_shutdown()] and should deallocate any resources acquired
-** by xInit.  The pAppData pointer is used as the only parameter to
-** xInit and xShutdown.
-**
-** SQLite holds the [SQLITE_MUTEX_STATIC_MAIN] mutex when it invokes
-** the xInit method, so the xInit method need not be threadsafe.  The
-** xShutdown method is only called from [sqlite3_shutdown()] so it does
-** not need to be threadsafe either.  For all other methods, SQLite
-** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
-** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
-** it is by default) and so the methods are automatically serialized.
-** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
-** methods must be threadsafe or else make their own arrangements for
-** serialization.
-**
-** SQLite will never invoke xInit() more than once without an intervening
-** call to xShutdown().
-*/
-typedef struct sqlite3_mem_methods sqlite3_mem_methods;
-struct sqlite3_mem_methods {
-  void *(*xMalloc)(int);         /* Memory allocation function */
-  void (*xFree)(void*);          /* Free a prior allocation */
-  void *(*xRealloc)(void*,int);  /* Resize an allocation */
-  int (*xSize)(void*);           /* Return the size of an allocation */
-  int (*xRoundup)(int);          /* Round up request size to allocation size */
-  int (*xInit)(void*);           /* Initialize the memory allocator */
-  void (*xShutdown)(void*);      /* Deinitialize the memory allocator */
-  void *pAppData;                /* Argument to xInit() and xShutdown() */
-};
-
-/*
-** CAPI3REF: Configuration Options
-** KEYWORDS: {configuration option}
-**
-** These constants are the available integer configuration options that
-** can be passed as the first argument to the [sqlite3_config()] interface.
-**
-** New configuration options may be added in future releases of SQLite.
-** Existing configuration options might be discontinued.  Applications
-** should check the return code from [sqlite3_config()] to make sure that
-** the call worked.  The [sqlite3_config()] interface will return a
-** non-zero [error code] if a discontinued or unsupported configuration option
-** is invoked.
-**
-** <dl>
-** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
-** <dd>There are no arguments to this option.  ^This option sets the
-** [threading mode] to Single-thread.  In other words, it disables
-** all mutexing and puts SQLite into a mode where it can only be used
-** by a single thread.   ^If SQLite is compiled with
-** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
-** it is not possible to change the [threading mode] from its default
-** value of Single-thread and so [sqlite3_config()] will return 
-** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
-** configuration option.</dd>
-**
-** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt>
-** <dd>There are no arguments to this option.  ^This option sets the
-** [threading mode] to Multi-thread.  In other words, it disables
-** mutexing on [database connection] and [prepared statement] objects.
-** The application is responsible for serializing access to
-** [database connections] and [prepared statements].  But other mutexes
-** are enabled so that SQLite will be safe to use in a multi-threaded
-** environment as long as no two threads attempt to use the same
-** [database connection] at the same time.  ^If SQLite is compiled with
-** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
-** it is not possible to set the Multi-thread [threading mode] and
-** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
-** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
-**
-** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt>
-** <dd>There are no arguments to this option.  ^This option sets the
-** [threading mode] to Serialized. In other words, this option enables
-** all mutexes including the recursive
-** mutexes on [database connection] and [prepared statement] objects.
-** In this mode (which is the default when SQLite is compiled with
-** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
-** to [database connections] and [prepared statements] so that the
-** application is free to use the same [database connection] or the
-** same [prepared statement] in different threads at the same time.
-** ^If SQLite is compiled with
-** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
-** it is not possible to set the Serialized [threading mode] and
-** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
-** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
-**
-** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
-** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is 
-** a pointer to an instance of the [sqlite3_mem_methods] structure.
-** The argument specifies
-** alternative low-level memory allocation routines to be used in place of
-** the memory allocation routines built into SQLite.)^ ^SQLite makes
-** its own private copy of the content of the [sqlite3_mem_methods] structure
-** before the [sqlite3_config()] call returns.</dd>
-**
-** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
-** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
-** is a pointer to an instance of the [sqlite3_mem_methods] structure.
-** The [sqlite3_mem_methods]
-** structure is filled with the currently defined memory allocation routines.)^
-** This option can be used to overload the default memory allocation
-** routines with a wrapper that simulations memory allocation failure or
-** tracks memory usage, for example. </dd>
-**
-** [[SQLITE_CONFIG_SMALL_MALLOC]] <dt>SQLITE_CONFIG_SMALL_MALLOC</dt>
-** <dd> ^The SQLITE_CONFIG_SMALL_MALLOC option takes single argument of
-** type int, interpreted as a boolean, which if true provides a hint to
-** SQLite that it should avoid large memory allocations if possible.
-** SQLite will run faster if it is free to make large memory allocations,
-** but some application might prefer to run slower in exchange for
-** guarantees about memory fragmentation that are possible if large
-** allocations are avoided.  This hint is normally off.
-** </dd>
-**
-** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
-** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
-** interpreted as a boolean, which enables or disables the collection of
-** memory allocation statistics. ^(When memory allocation statistics are
-** disabled, the following SQLite interfaces become non-operational:
-**   <ul>
-**   <li> [sqlite3_hard_heap_limit64()]
-**   <li> [sqlite3_memory_used()]
-**   <li> [sqlite3_memory_highwater()]
-**   <li> [sqlite3_soft_heap_limit64()]
-**   <li> [sqlite3_status64()]
-**   </ul>)^
-** ^Memory allocation statistics are enabled by default unless SQLite is
-** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
-** allocation statistics are disabled by default.
-** </dd>
-**
-** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
-** <dd> The SQLITE_CONFIG_SCRATCH option is no longer used.
-** </dd>
-**
-** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
-** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool
-** that SQLite can use for the database page cache with the default page
-** cache implementation.  
-** This configuration option is a no-op if an application-defined page
-** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2].
-** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
-** 8-byte aligned memory (pMem), the size of each page cache line (sz),
-** and the number of cache lines (N).
-** The sz argument should be the size of the largest database page
-** (a power of two between 512 and 65536) plus some extra bytes for each
-** page header.  ^The number of extra bytes needed by the page header
-** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ].
-** ^It is harmless, apart from the wasted memory,
-** for the sz parameter to be larger than necessary.  The pMem
-** argument must be either a NULL pointer or a pointer to an 8-byte
-** aligned block of memory of at least sz*N bytes, otherwise
-** subsequent behavior is undefined.
-** ^When pMem is not NULL, SQLite will strive to use the memory provided
-** to satisfy page cache needs, falling back to [sqlite3_malloc()] if
-** a page cache line is larger than sz bytes or if all of the pMem buffer
-** is exhausted.
-** ^If pMem is NULL and N is non-zero, then each database connection
-** does an initial bulk allocation for page cache memory
-** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or
-** of -1024*N bytes if N is negative, . ^If additional
-** page cache memory is needed beyond what is provided by the initial
-** allocation, then SQLite goes to [sqlite3_malloc()] separately for each
-** additional cache line. </dd>
-**
-** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
-** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer 
-** that SQLite will use for all of its dynamic memory allocation needs
-** beyond those provided for by [SQLITE_CONFIG_PAGECACHE].
-** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
-** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
-** [SQLITE_ERROR] if invoked otherwise.
-** ^There are three arguments to SQLITE_CONFIG_HEAP:
-** An 8-byte aligned pointer to the memory,
-** the number of bytes in the memory buffer, and the minimum allocation size.
-** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
-** to using its default memory allocator (the system malloc() implementation),
-** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  ^If the
-** memory pointer is not NULL then the alternative memory
-** allocator is engaged to handle all of SQLites memory allocation needs.
-** The first pointer (the memory pointer) must be aligned to an 8-byte
-** boundary or subsequent behavior of SQLite will be undefined.
-** The minimum allocation size is capped at 2**12. Reasonable values
-** for the minimum allocation size are 2**5 through 2**8.</dd>
-**
-** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
-** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
-** pointer to an instance of the [sqlite3_mutex_methods] structure.
-** The argument specifies alternative low-level mutex routines to be used
-** in place the mutex routines built into SQLite.)^  ^SQLite makes a copy of
-** the content of the [sqlite3_mutex_methods] structure before the call to
-** [sqlite3_config()] returns. ^If SQLite is compiled with
-** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
-** the entire mutexing subsystem is omitted from the build and hence calls to
-** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
-** return [SQLITE_ERROR].</dd>
-**
-** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
-** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
-** is a pointer to an instance of the [sqlite3_mutex_methods] structure.  The
-** [sqlite3_mutex_methods]
-** structure is filled with the currently defined mutex routines.)^
-** This option can be used to overload the default mutex allocation
-** routines with a wrapper used to track mutex usage for performance
-** profiling or testing, for example.   ^If SQLite is compiled with
-** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
-** the entire mutexing subsystem is omitted from the build and hence calls to
-** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
-** return [SQLITE_ERROR].</dd>
-**
-** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
-** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
-** the default size of lookaside memory on each [database connection].
-** The first argument is the
-** size of each lookaside buffer slot and the second is the number of
-** slots allocated to each database connection.)^  ^(SQLITE_CONFIG_LOOKASIDE
-** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
-** option to [sqlite3_db_config()] can be used to change the lookaside
-** configuration on individual connections.)^ </dd>
-**
-** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
-** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is 
-** a pointer to an [sqlite3_pcache_methods2] object.  This object specifies
-** the interface to a custom page cache implementation.)^
-** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
-**
-** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
-** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
-** is a pointer to an [sqlite3_pcache_methods2] object.  SQLite copies of
-** the current page cache implementation into that object.)^ </dd>
-**
-** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
-** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
-** global [error log].
-** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
-** function with a call signature of void(*)(void*,int,const char*), 
-** and a pointer to void. ^If the function pointer is not NULL, it is
-** invoked by [sqlite3_log()] to process each logging event.  ^If the
-** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
-** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
-** passed through as the first parameter to the application-defined logger
-** function whenever that function is invoked.  ^The second parameter to
-** the logger function is a copy of the first parameter to the corresponding
-** [sqlite3_log()] call and is intended to be a [result code] or an
-** [extended result code].  ^The third parameter passed to the logger is
-** log message after formatting via [sqlite3_snprintf()].
-** The SQLite logging interface is not reentrant; the logger function
-** supplied by the application must not invoke any SQLite interface.
-** In a multi-threaded application, the application-defined logger
-** function must be threadsafe. </dd>
-**
-** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
-** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
-** If non-zero, then URI handling is globally enabled. If the parameter is zero,
-** then URI handling is globally disabled.)^ ^If URI handling is globally
-** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()],
-** [sqlite3_open16()] or
-** specified as part of [ATTACH] commands are interpreted as URIs, regardless
-** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
-** connection is opened. ^If it is globally disabled, filenames are
-** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
-** database connection is opened. ^(By default, URI handling is globally
-** disabled. The default value may be changed by compiling with the
-** [SQLITE_USE_URI] symbol defined.)^
-**
-** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
-** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
-** argument which is interpreted as a boolean in order to enable or disable
-** the use of covering indices for full table scans in the query optimizer.
-** ^The default setting is determined
-** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
-** if that compile-time option is omitted.
-** The ability to disable the use of covering indices for full table scans
-** is because some incorrectly coded legacy applications might malfunction
-** when the optimization is enabled.  Providing the ability to
-** disable the optimization allows the older, buggy application code to work
-** without change even with newer versions of SQLite.
-**
-** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
-** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
-** <dd> These options are obsolete and should not be used by new code.
-** They are retained for backwards compatibility but are now no-ops.
-** </dd>
-**
-** [[SQLITE_CONFIG_SQLLOG]]
-** <dt>SQLITE_CONFIG_SQLLOG
-** <dd>This option is only available if sqlite is compiled with the
-** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should
-** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int).
-** The second should be of type (void*). The callback is invoked by the library
-** in three separate circumstances, identified by the value passed as the
-** fourth parameter. If the fourth parameter is 0, then the database connection
-** passed as the second argument has just been opened. The third argument
-** points to a buffer containing the name of the main database file. If the
-** fourth parameter is 1, then the SQL statement that the third parameter
-** points to has just been executed. Or, if the fourth parameter is 2, then
-** the connection being passed as the second parameter is being closed. The
-** third parameter is passed NULL In this case.  An example of using this
-** configuration option can be seen in the "test_sqllog.c" source file in
-** the canonical SQLite source tree.</dd>
-**
-** [[SQLITE_CONFIG_MMAP_SIZE]]
-** <dt>SQLITE_CONFIG_MMAP_SIZE
-** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
-** that are the default mmap size limit (the default setting for
-** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
-** ^The default setting can be overridden by each database connection using
-** either the [PRAGMA mmap_size] command, or by using the
-** [SQLITE_FCNTL_MMAP_SIZE] file control.  ^(The maximum allowed mmap size
-** will be silently truncated if necessary so that it does not exceed the
-** compile-time maximum mmap size set by the
-** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
-** ^If either argument to this option is negative, then that argument is
-** changed to its compile-time default.
-**
-** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
-** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
-** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
-** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
-** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
-** that specifies the maximum size of the created heap.
-**
-** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
-** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
-** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
-** is a pointer to an integer and writes into that integer the number of extra
-** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
-** The amount of extra space required can change depending on the compiler,
-** target platform, and SQLite version.
-**
-** [[SQLITE_CONFIG_PMASZ]]
-** <dt>SQLITE_CONFIG_PMASZ
-** <dd>^The SQLITE_CONFIG_PMASZ option takes a single parameter which
-** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded
-** sorter to that integer.  The default minimum PMA Size is set by the
-** [SQLITE_SORTER_PMASZ] compile-time option.  New threads are launched
-** to help with sort operations when multithreaded sorting
-** is enabled (using the [PRAGMA threads] command) and the amount of content
-** to be sorted exceeds the page size times the minimum of the
-** [PRAGMA cache_size] setting and this value.
-**
-** [[SQLITE_CONFIG_STMTJRNL_SPILL]]
-** <dt>SQLITE_CONFIG_STMTJRNL_SPILL
-** <dd>^The SQLITE_CONFIG_STMTJRNL_SPILL option takes a single parameter which
-** becomes the [statement journal] spill-to-disk threshold.  
-** [Statement journals] are held in memory until their size (in bytes)
-** exceeds this threshold, at which point they are written to disk.
-** Or if the threshold is -1, statement journals are always held
-** exclusively in memory.
-** Since many statement journals never become large, setting the spill
-** threshold to a value such as 64KiB can greatly reduce the amount of
-** I/O required to support statement rollback.
-** The default value for this setting is controlled by the
-** [SQLITE_STMTJRNL_SPILL] compile-time option.
-**
-** [[SQLITE_CONFIG_SORTERREF_SIZE]]
-** <dt>SQLITE_CONFIG_SORTERREF_SIZE
-** <dd>The SQLITE_CONFIG_SORTERREF_SIZE option accepts a single parameter
-** of type (int) - the new value of the sorter-reference size threshold.
-** Usually, when SQLite uses an external sort to order records according
-** to an ORDER BY clause, all fields required by the caller are present in the
-** sorted records. However, if SQLite determines based on the declared type
-** of a table column that its values are likely to be very large - larger
-** than the configured sorter-reference size threshold - then a reference
-** is stored in each sorted record and the required column values loaded
-** from the database as records are returned in sorted order. The default
-** value for this option is to never use this optimization. Specifying a 
-** negative value for this option restores the default behaviour.
-** This option is only available if SQLite is compiled with the
-** [SQLITE_ENABLE_SORTER_REFERENCES] compile-time option.
-**
-** [[SQLITE_CONFIG_MEMDB_MAXSIZE]]
-** <dt>SQLITE_CONFIG_MEMDB_MAXSIZE
-** <dd>The SQLITE_CONFIG_MEMDB_MAXSIZE option accepts a single parameter
-** [sqlite3_int64] parameter which is the default maximum size for an in-memory
-** database created using [sqlite3_deserialize()].  This default maximum
-** size can be adjusted up or down for individual databases using the
-** [SQLITE_FCNTL_SIZE_LIMIT] [sqlite3_file_control|file-control].  If this
-** configuration setting is never used, then the default maximum is determined
-** by the [SQLITE_MEMDB_DEFAULT_MAXSIZE] compile-time option.  If that
-** compile-time option is not set, then the default maximum is 1073741824.
-** </dl>
-*/
-#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
-#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
-#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
-#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
-#define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */
-#define SQLITE_CONFIG_SCRATCH       6  /* No longer used */
-#define SQLITE_CONFIG_PAGECACHE     7  /* void*, int sz, int N */
-#define SQLITE_CONFIG_HEAP          8  /* void*, int nByte, int min */
-#define SQLITE_CONFIG_MEMSTATUS     9  /* boolean */
-#define SQLITE_CONFIG_MUTEX        10  /* sqlite3_mutex_methods* */
-#define SQLITE_CONFIG_GETMUTEX     11  /* sqlite3_mutex_methods* */
-/* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */ 
-#define SQLITE_CONFIG_LOOKASIDE    13  /* int int */
-#define SQLITE_CONFIG_PCACHE       14  /* no-op */
-#define SQLITE_CONFIG_GETPCACHE    15  /* no-op */
-#define SQLITE_CONFIG_LOG          16  /* xFunc, void* */
-#define SQLITE_CONFIG_URI          17  /* int */
-#define SQLITE_CONFIG_PCACHE2      18  /* sqlite3_pcache_methods2* */
-#define SQLITE_CONFIG_GETPCACHE2   19  /* sqlite3_pcache_methods2* */
-#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20  /* int */
-#define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
-#define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
-#define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */
-#define SQLITE_CONFIG_PCACHE_HDRSZ        24  /* int *psz */
-#define SQLITE_CONFIG_PMASZ               25  /* unsigned int szPma */
-#define SQLITE_CONFIG_STMTJRNL_SPILL      26  /* int nByte */
-#define SQLITE_CONFIG_SMALL_MALLOC        27  /* boolean */
-#define SQLITE_CONFIG_SORTERREF_SIZE      28  /* int nByte */
-#define SQLITE_CONFIG_MEMDB_MAXSIZE       29  /* sqlite3_int64 */
-
-/*
-** CAPI3REF: Database Connection Configuration Options
-**
-** These constants are the available integer configuration options that
-** can be passed as the second argument to the [sqlite3_db_config()] interface.
-**
-** New configuration options may be added in future releases of SQLite.
-** Existing configuration options might be discontinued.  Applications
-** should check the return code from [sqlite3_db_config()] to make sure that
-** the call worked.  ^The [sqlite3_db_config()] interface will return a
-** non-zero [error code] if a discontinued or unsupported configuration option
-** is invoked.
-**
-** <dl>
-** [[SQLITE_DBCONFIG_LOOKASIDE]]
-** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
-** <dd> ^This option takes three additional arguments that determine the 
-** [lookaside memory allocator] configuration for the [database connection].
-** ^The first argument (the third parameter to [sqlite3_db_config()] is a
-** pointer to a memory buffer to use for lookaside memory.
-** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
-** may be NULL in which case SQLite will allocate the
-** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
-** size of each lookaside buffer slot.  ^The third argument is the number of
-** slots.  The size of the buffer in the first argument must be greater than
-** or equal to the product of the second and third arguments.  The buffer
-** must be aligned to an 8-byte boundary.  ^If the second argument to
-** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
-** rounded down to the next smaller multiple of 8.  ^(The lookaside memory
-** configuration for a database connection can only be changed when that
-** connection is not currently using lookaside memory, or in other words
-** when the "current value" returned by
-** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
-** Any attempt to change the lookaside memory configuration when lookaside
-** memory is in use leaves the configuration unchanged and returns 
-** [SQLITE_BUSY].)^</dd>
-**
-** [[SQLITE_DBCONFIG_ENABLE_FKEY]]
-** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
-** <dd> ^This option is used to enable or disable the enforcement of
-** [foreign key constraints].  There should be two additional arguments.
-** The first argument is an integer which is 0 to disable FK enforcement,
-** positive to enable FK enforcement or negative to leave FK enforcement
-** unchanged.  The second parameter is a pointer to an integer into which
-** is written 0 or 1 to indicate whether FK enforcement is off or on
-** following this call.  The second parameter may be a NULL pointer, in
-** which case the FK enforcement setting is not reported back. </dd>
-**
-** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]]
-** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
-** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
-** There should be two additional arguments.
-** The first argument is an integer which is 0 to disable triggers,
-** positive to enable triggers or negative to leave the setting unchanged.
-** The second parameter is a pointer to an integer into which
-** is written 0 or 1 to indicate whether triggers are disabled or enabled
-** following this call.  The second parameter may be a NULL pointer, in
-** which case the trigger setting is not reported back. </dd>
-**
-** [[SQLITE_DBCONFIG_ENABLE_VIEW]]
-** <dt>SQLITE_DBCONFIG_ENABLE_VIEW</dt>
-** <dd> ^This option is used to enable or disable [CREATE VIEW | views].
-** There should be two additional arguments.
-** The first argument is an integer which is 0 to disable views,
-** positive to enable views or negative to leave the setting unchanged.
-** The second parameter is a pointer to an integer into which
-** is written 0 or 1 to indicate whether views are disabled or enabled
-** following this call.  The second parameter may be a NULL pointer, in
-** which case the view setting is not reported back. </dd>
-**
-** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]]
-** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
-** <dd> ^This option is used to enable or disable the
-** [fts3_tokenizer()] function which is part of the
-** [FTS3] full-text search engine extension.
-** There should be two additional arguments.
-** The first argument is an integer which is 0 to disable fts3_tokenizer() or
-** positive to enable fts3_tokenizer() or negative to leave the setting
-** unchanged.
-** The second parameter is a pointer to an integer into which
-** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
-** following this call.  The second parameter may be a NULL pointer, in
-** which case the new setting is not reported back. </dd>
-**
-** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]]
-** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
-** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
-** interface independently of the [load_extension()] SQL function.
-** The [sqlite3_enable_load_extension()] API enables or disables both the
-** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
-** There should be two additional arguments.
-** When the first argument to this interface is 1, then only the C-API is
-** enabled and the SQL function remains disabled.  If the first argument to
-** this interface is 0, then both the C-API and the SQL function are disabled.
-** If the first argument is -1, then no changes are made to state of either the
-** C-API or the SQL function.
-** The second parameter is a pointer to an integer into which
-** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
-** is disabled or enabled following this call.  The second parameter may
-** be a NULL pointer, in which case the new setting is not reported back.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
-** <dd> ^This option is used to change the name of the "main" database
-** schema.  ^The sole argument is a pointer to a constant UTF8 string
-** which will become the new schema name in place of "main".  ^SQLite
-** does not make a copy of the new main schema name string, so the application
-** must ensure that the argument passed into this DBCONFIG option is unchanged
-** until after the database connection closes.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]] 
-** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
-** <dd> Usually, when a database in wal mode is closed or detached from a 
-** database handle, SQLite checks if this will mean that there are now no 
-** connections at all to the database. If so, it performs a checkpoint 
-** operation before closing the connection. This option may be used to
-** override this behaviour. The first parameter passed to this operation
-** is an integer - positive to disable checkpoints-on-close, or zero (the
-** default) to enable them, and negative to leave the setting unchanged.
-** The second parameter is a pointer to an integer
-** into which is written 0 or 1 to indicate whether checkpoints-on-close
-** have been disabled - 0 if they are not disabled, 1 if they are.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
-** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
-** the [query planner stability guarantee] (QPSG).  When the QPSG is active,
-** a single SQL query statement will always use the same algorithm regardless
-** of values of [bound parameters].)^ The QPSG disables some query optimizations
-** that look at the values of bound parameters, which can make some queries
-** slower.  But the QPSG has the advantage of more predictable behavior.  With
-** the QPSG active, SQLite will always use the same query plan in the field as
-** was used during testing in the lab.
-** The first argument to this setting is an integer which is 0 to disable 
-** the QPSG, positive to enable QPSG, or negative to leave the setting
-** unchanged. The second parameter is a pointer to an integer into which
-** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
-** following this call.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
-** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not 
-** include output for any operations performed by trigger programs. This
-** option is used to set or clear (the default) a flag that governs this
-** behavior. The first parameter passed to this operation is an integer -
-** positive to enable output for trigger programs, or zero to disable it,
-** or negative to leave the setting unchanged.
-** The second parameter is a pointer to an integer into which is written 
-** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
-** it is not disabled, 1 if it is.  
-** </dd>
-**
-** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
-** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
-** [VACUUM] in order to reset a database back to an empty database
-** with no schema and no content. The following process works even for
-** a badly corrupted database file:
-** <ol>
-** <li> If the database connection is newly opened, make sure it has read the
-**      database schema by preparing then discarding some query against the
-**      database, or calling sqlite3_table_column_metadata(), ignoring any
-**      errors.  This step is only necessary if the application desires to keep
-**      the database in WAL mode after the reset if it was in WAL mode before
-**      the reset.  
-** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
-** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
-** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
-** </ol>
-** Because resetting a database is destructive and irreversible, the
-** process requires the use of this obscure API and multiple steps to help
-** ensure that it does not happen by accident.
-**
-** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt>
-** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the
-** "defensive" flag for a database connection.  When the defensive
-** flag is enabled, language features that allow ordinary SQL to 
-** deliberately corrupt the database file are disabled.  The disabled
-** features include but are not limited to the following:
-** <ul>
-** <li> The [PRAGMA writable_schema=ON] statement.
-** <li> The [PRAGMA journal_mode=OFF] statement.
-** <li> Writes to the [sqlite_dbpage] virtual table.
-** <li> Direct writes to [shadow tables].
-** </ul>
-** </dd>
-**
-** [[SQLITE_DBCONFIG_WRITABLE_SCHEMA]] <dt>SQLITE_DBCONFIG_WRITABLE_SCHEMA</dt>
-** <dd>The SQLITE_DBCONFIG_WRITABLE_SCHEMA option activates or deactivates the
-** "writable_schema" flag. This has the same effect and is logically equivalent
-** to setting [PRAGMA writable_schema=ON] or [PRAGMA writable_schema=OFF].
-** The first argument to this setting is an integer which is 0 to disable 
-** the writable_schema, positive to enable writable_schema, or negative to
-** leave the setting unchanged. The second parameter is a pointer to an
-** integer into which is written 0 or 1 to indicate whether the writable_schema
-** is enabled or disabled following this call.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_LEGACY_ALTER_TABLE]]
-** <dt>SQLITE_DBCONFIG_LEGACY_ALTER_TABLE</dt>
-** <dd>The SQLITE_DBCONFIG_LEGACY_ALTER_TABLE option activates or deactivates
-** the legacy behavior of the [ALTER TABLE RENAME] command such it
-** behaves as it did prior to [version 3.24.0] (2018-06-04).  See the
-** "Compatibility Notice" on the [ALTER TABLE RENAME documentation] for
-** additional information. This feature can also be turned on and off
-** using the [PRAGMA legacy_alter_table] statement.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_DQS_DML]]
-** <dt>SQLITE_DBCONFIG_DQS_DML</td>
-** <dd>The SQLITE_DBCONFIG_DQS_DML option activates or deactivates
-** the legacy [double-quoted string literal] misfeature for DML statements
-** only, that is DELETE, INSERT, SELECT, and UPDATE statements. The
-** default value of this setting is determined by the [-DSQLITE_DQS]
-** compile-time option.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_DQS_DDL]]
-** <dt>SQLITE_DBCONFIG_DQS_DDL</td>
-** <dd>The SQLITE_DBCONFIG_DQS option activates or deactivates
-** the legacy [double-quoted string literal] misfeature for DDL statements,
-** such as CREATE TABLE and CREATE INDEX. The
-** default value of this setting is determined by the [-DSQLITE_DQS]
-** compile-time option.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_TRUSTED_SCHEMA]]
-** <dt>SQLITE_DBCONFIG_TRUSTED_SCHEMA</td>
-** <dd>The SQLITE_DBCONFIG_TRUSTED_SCHEMA option tells SQLite to
-** assume that database schemas are untainted by malicious content.
-** When the SQLITE_DBCONFIG_TRUSTED_SCHEMA option is disabled, SQLite
-** takes additional defensive steps to protect the application from harm
-** including:
-** <ul>
-** <li> Prohibit the use of SQL functions inside triggers, views,
-** CHECK constraints, DEFAULT clauses, expression indexes, 
-** partial indexes, or generated columns
-** unless those functions are tagged with [SQLITE_INNOCUOUS].
-** <li> Prohibit the use of virtual tables inside of triggers or views
-** unless those virtual tables are tagged with [SQLITE_VTAB_INNOCUOUS].
-** </ul>
-** This setting defaults to "on" for legacy compatibility, however
-** all applications are advised to turn it off if possible. This setting
-** can also be controlled using the [PRAGMA trusted_schema] statement.
-** </dd>
-**
-** [[SQLITE_DBCONFIG_LEGACY_FILE_FORMAT]]
-** <dt>SQLITE_DBCONFIG_LEGACY_FILE_FORMAT</td>
-** <dd>The SQLITE_DBCONFIG_LEGACY_FILE_FORMAT option activates or deactivates
-** the legacy file format flag.  When activated, this flag causes all newly
-** created database file to have a schema format version number (the 4-byte
-** integer found at offset 44 into the database header) of 1.  This in turn
-** means that the resulting database file will be readable and writable by
-** any SQLite version back to 3.0.0 ([dateof:3.0.0]).  Without this setting,
-** newly created databases are generally not understandable by SQLite versions
-** prior to 3.3.0 ([dateof:3.3.0]).  As these words are written, there
-** is now scarcely any need to generated database files that are compatible 
-** all the way back to version 3.0.0, and so this setting is of little
-** practical use, but is provided so that SQLite can continue to claim the
-** ability to generate new database files that are compatible with  version
-** 3.0.0.
-** <p>Note that when the SQLITE_DBCONFIG_LEGACY_FILE_FORMAT setting is on,
-** the [VACUUM] command will fail with an obscure error when attempting to
-** process a table with generated columns and a descending index.  This is
-** not considered a bug since SQLite versions 3.3.0 and earlier do not support
-** either generated columns or decending indexes.
-** </dd>
-** </dl>
-*/
-#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
-#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
-#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
-#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
-#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
-#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
-#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
-#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
-#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */
-#define SQLITE_DBCONFIG_RESET_DATABASE        1009 /* int int* */
-#define SQLITE_DBCONFIG_DEFENSIVE             1010 /* int int* */
-#define SQLITE_DBCONFIG_WRITABLE_SCHEMA       1011 /* int int* */
-#define SQLITE_DBCONFIG_LEGACY_ALTER_TABLE    1012 /* int int* */
-#define SQLITE_DBCONFIG_DQS_DML               1013 /* int int* */
-#define SQLITE_DBCONFIG_DQS_DDL               1014 /* int int* */
-#define SQLITE_DBCONFIG_ENABLE_VIEW           1015 /* int int* */
-#define SQLITE_DBCONFIG_LEGACY_FILE_FORMAT    1016 /* int int* */
-#define SQLITE_DBCONFIG_TRUSTED_SCHEMA        1017 /* int int* */
-#define SQLITE_DBCONFIG_MAX                   1017 /* Largest DBCONFIG */
-
-/*
-** CAPI3REF: Enable Or Disable Extended Result Codes
-** METHOD: sqlite3
-**
-** ^The sqlite3_extended_result_codes() routine enables or disables the
-** [extended result codes] feature of SQLite. ^The extended result
-** codes are disabled by default for historical compatibility.
-*/
-SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);
-
-/*
-** CAPI3REF: Last Insert Rowid
-** METHOD: sqlite3
-**
-** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
-** has a unique 64-bit signed
-** integer key called the [ROWID | "rowid"]. ^The rowid is always available
-** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
-** names are not also used by explicitly declared columns. ^If
-** the table has a column of type [INTEGER PRIMARY KEY] then that column
-** is another alias for the rowid.
-**
-** ^The sqlite3_last_insert_rowid(D) interface usually returns the [rowid] of
-** the most recent successful [INSERT] into a rowid table or [virtual table]
-** on database connection D. ^Inserts into [WITHOUT ROWID] tables are not
-** recorded. ^If no successful [INSERT]s into rowid tables have ever occurred 
-** on the database connection D, then sqlite3_last_insert_rowid(D) returns 
-** zero.
-**
-** As well as being set automatically as rows are inserted into database
-** tables, the value returned by this function may be set explicitly by
-** [sqlite3_set_last_insert_rowid()]
-**
-** Some virtual table implementations may INSERT rows into rowid tables as
-** part of committing a transaction (e.g. to flush data accumulated in memory
-** to disk). In this case subsequent calls to this function return the rowid
-** associated with these internal INSERT operations, which leads to 
-** unintuitive results. Virtual table implementations that do write to rowid
-** tables in this way can avoid this problem by restoring the original 
-** rowid value using [sqlite3_set_last_insert_rowid()] before returning 
-** control to the user.
-**
-** ^(If an [INSERT] occurs within a trigger then this routine will 
-** return the [rowid] of the inserted row as long as the trigger is 
-** running. Once the trigger program ends, the value returned 
-** by this routine reverts to what it was before the trigger was fired.)^
-**
-** ^An [INSERT] that fails due to a constraint violation is not a
-** successful [INSERT] and does not change the value returned by this
-** routine.  ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
-** and INSERT OR ABORT make no changes to the return value of this
-** routine when their insertion fails.  ^(When INSERT OR REPLACE
-** encounters a constraint violation, it does not fail.  The
-** INSERT continues to completion after deleting rows that caused
-** the constraint problem so INSERT OR REPLACE will always change
-** the return value of this interface.)^
-**
-** ^For the purposes of this routine, an [INSERT] is considered to
-** be successful even if it is subsequently rolled back.
-**
-** This function is accessible to SQL statements via the
-** [last_insert_rowid() SQL function].
-**
-** If a separate thread performs a new [INSERT] on the same
-** database connection while the [sqlite3_last_insert_rowid()]
-** function is running and thus changes the last insert [rowid],
-** then the value returned by [sqlite3_last_insert_rowid()] is
-** unpredictable and might not equal either the old or the new
-** last insert [rowid].
-*/
-SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);
-
-/*
-** CAPI3REF: Set the Last Insert Rowid value.
-** METHOD: sqlite3
-**
-** The sqlite3_set_last_insert_rowid(D, R) method allows the application to
-** set the value returned by calling sqlite3_last_insert_rowid(D) to R 
-** without inserting a row into the database.
-*/
-SQLITE_API void sqlite3_set_last_insert_rowid(sqlite3*,sqlite3_int64);
-
-/*
-** CAPI3REF: Count The Number Of Rows Modified
-** METHOD: sqlite3
-**
-** ^This function returns the number of rows modified, inserted or
-** deleted by the most recently completed INSERT, UPDATE or DELETE
-** statement on the database connection specified by the only parameter.
-** ^Executing any other type of SQL statement does not modify the value
-** returned by this function.
-**
-** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
-** considered - auxiliary changes caused by [CREATE TRIGGER | triggers], 
-** [foreign key actions] or [REPLACE] constraint resolution are not counted.
-** 
-** Changes to a view that are intercepted by 
-** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value 
-** returned by sqlite3_changes() immediately after an INSERT, UPDATE or 
-** DELETE statement run on a view is always zero. Only changes made to real 
-** tables are counted.
-**
-** Things are more complicated if the sqlite3_changes() function is
-** executed while a trigger program is running. This may happen if the
-** program uses the [changes() SQL function], or if some other callback
-** function invokes sqlite3_changes() directly. Essentially:
-** 
-** <ul>
-**   <li> ^(Before entering a trigger program the value returned by
-**        sqlite3_changes() function is saved. After the trigger program 
-**        has finished, the original value is restored.)^
-** 
-**   <li> ^(Within a trigger program each INSERT, UPDATE and DELETE 
-**        statement sets the value returned by sqlite3_changes() 
-**        upon completion as normal. Of course, this value will not include 
-**        any changes performed by sub-triggers, as the sqlite3_changes() 
-**        value will be saved and restored after each sub-trigger has run.)^
-** </ul>
-** 
-** ^This means that if the changes() SQL function (or similar) is used
-** by the first INSERT, UPDATE or DELETE statement within a trigger, it 
-** returns the value as set when the calling statement began executing.
-** ^If it is used by the second or subsequent such statement within a trigger 
-** program, the value returned reflects the number of rows modified by the 
-** previous INSERT, UPDATE or DELETE statement within the same trigger.
-**
-** If a separate thread makes changes on the same database connection
-** while [sqlite3_changes()] is running then the value returned
-** is unpredictable and not meaningful.
-**
-** See also:
-** <ul>
-** <li> the [sqlite3_total_changes()] interface
-** <li> the [count_changes pragma]
-** <li> the [changes() SQL function]
-** <li> the [data_version pragma]
-** </ul>
-*/
-SQLITE_API int sqlite3_changes(sqlite3*);
-
-/*
-** CAPI3REF: Total Number Of Rows Modified
-** METHOD: sqlite3
-**
-** ^This function returns the total number of rows inserted, modified or
-** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
-** since the database connection was opened, including those executed as
-** part of trigger programs. ^Executing any other type of SQL statement
-** does not affect the value returned by sqlite3_total_changes().
-** 
-** ^Changes made as part of [foreign key actions] are included in the
-** count, but those made as part of REPLACE constraint resolution are
-** not. ^Changes to a view that are intercepted by INSTEAD OF triggers 
-** are not counted.
-**
-** The [sqlite3_total_changes(D)] interface only reports the number
-** of rows that changed due to SQL statement run against database
-** connection D.  Any changes by other database connections are ignored.
-** To detect changes against a database file from other database
-** connections use the [PRAGMA data_version] command or the
-** [SQLITE_FCNTL_DATA_VERSION] [file control].
-** 
-** If a separate thread makes changes on the same database connection
-** while [sqlite3_total_changes()] is running then the value
-** returned is unpredictable and not meaningful.
-**
-** See also:
-** <ul>
-** <li> the [sqlite3_changes()] interface
-** <li> the [count_changes pragma]
-** <li> the [changes() SQL function]
-** <li> the [data_version pragma]
-** <li> the [SQLITE_FCNTL_DATA_VERSION] [file control]
-** </ul>
-*/
-SQLITE_API int sqlite3_total_changes(sqlite3*);
-
-/*
-** CAPI3REF: Interrupt A Long-Running Query
-** METHOD: sqlite3
-**
-** ^This function causes any pending database operation to abort and
-** return at its earliest opportunity. This routine is typically
-** called in response to a user action such as pressing "Cancel"
-** or Ctrl-C where the user wants a long query operation to halt
-** immediately.
-**
-** ^It is safe to call this routine from a thread different from the
-** thread that is currently running the database operation.  But it
-** is not safe to call this routine with a [database connection] that
-** is closed or might close before sqlite3_interrupt() returns.
-**
-** ^If an SQL operation is very nearly finished at the time when
-** sqlite3_interrupt() is called, then it might not have an opportunity
-** to be interrupted and might continue to completion.
-**
-** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
-** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
-** that is inside an explicit transaction, then the entire transaction
-** will be rolled back automatically.
-**
-** ^The sqlite3_interrupt(D) call is in effect until all currently running
-** SQL statements on [database connection] D complete.  ^Any new SQL statements
-** that are started after the sqlite3_interrupt() call and before the 
-** running statement count reaches zero are interrupted as if they had been
-** running prior to the sqlite3_interrupt() call.  ^New SQL statements
-** that are started after the running statement count reaches zero are
-** not effected by the sqlite3_interrupt().
-** ^A call to sqlite3_interrupt(D) that occurs when there are no running
-** SQL statements is a no-op and has no effect on SQL statements
-** that are started after the sqlite3_interrupt() call returns.
-*/
-SQLITE_API void sqlite3_interrupt(sqlite3*);
-
-/*
-** CAPI3REF: Determine If An SQL Statement Is Complete
-**
-** These routines are useful during command-line input to determine if the
-** currently entered text seems to form a complete SQL statement or
-** if additional input is needed before sending the text into
-** SQLite for parsing.  ^These routines return 1 if the input string
-** appears to be a complete SQL statement.  ^A statement is judged to be
-** complete if it ends with a semicolon token and is not a prefix of a
-** well-formed CREATE TRIGGER statement.  ^Semicolons that are embedded within
-** string literals or quoted identifier names or comments are not
-** independent tokens (they are part of the token in which they are
-** embedded) and thus do not count as a statement terminator.  ^Whitespace
-** and comments that follow the final semicolon are ignored.
-**
-** ^These routines return 0 if the statement is incomplete.  ^If a
-** memory allocation fails, then SQLITE_NOMEM is returned.
-**
-** ^These routines do not parse the SQL statements thus
-** will not detect syntactically incorrect SQL.
-**
-** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior 
-** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
-** automatically by sqlite3_complete16().  If that initialization fails,
-** then the return value from sqlite3_complete16() will be non-zero
-** regardless of whether or not the input SQL is complete.)^
-**
-** The input to [sqlite3_complete()] must be a zero-terminated
-** UTF-8 string.
-**
-** The input to [sqlite3_complete16()] must be a zero-terminated
-** UTF-16 string in native byte order.
-*/
-SQLITE_API int sqlite3_complete(const char *sql);
-SQLITE_API int sqlite3_complete16(const void *sql);
-
-/*
-** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
-** KEYWORDS: {busy-handler callback} {busy handler}
-** METHOD: sqlite3
-**
-** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
-** that might be invoked with argument P whenever
-** an attempt is made to access a database table associated with
-** [database connection] D when another thread
-** or process has the table locked.
-** The sqlite3_busy_handler() interface is used to implement
-** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
-**
-** ^If the busy callback is NULL, then [SQLITE_BUSY]
-** is returned immediately upon encountering the lock.  ^If the busy callback
-** is not NULL, then the callback might be invoked with two arguments.
-**
-** ^The first argument to the busy handler is a copy of the void* pointer which
-** is the third argument to sqlite3_busy_handler().  ^The second argument to
-** the busy handler callback is the number of times that the busy handler has
-** been invoked previously for the same locking event.  ^If the
-** busy callback returns 0, then no additional attempts are made to
-** access the database and [SQLITE_BUSY] is returned
-** to the application.
-** ^If the callback returns non-zero, then another attempt
-** is made to access the database and the cycle repeats.
-**
-** The presence of a busy handler does not guarantee that it will be invoked
-** when there is lock contention. ^If SQLite determines that invoking the busy
-** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
-** to the application instead of invoking the 
-** busy handler.
-** Consider a scenario where one process is holding a read lock that
-** it is trying to promote to a reserved lock and
-** a second process is holding a reserved lock that it is trying
-** to promote to an exclusive lock.  The first process cannot proceed
-** because it is blocked by the second and the second process cannot
-** proceed because it is blocked by the first.  If both processes
-** invoke the busy handlers, neither will make any progress.  Therefore,
-** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
-** will induce the first process to release its read lock and allow
-** the second process to proceed.
-**
-** ^The default busy callback is NULL.
-**
-** ^(There can only be a single busy handler defined for each
-** [database connection].  Setting a new busy handler clears any
-** previously set handler.)^  ^Note that calling [sqlite3_busy_timeout()]
-** or evaluating [PRAGMA busy_timeout=N] will change the
-** busy handler and thus clear any previously set busy handler.
-**
-** The busy callback should not take any actions which modify the
-** database connection that invoked the busy handler.  In other words,
-** the busy handler is not reentrant.  Any such actions
-** result in undefined behavior.
-** 
-** A busy handler must not close the database connection
-** or [prepared statement] that invoked the busy handler.
-*/
-SQLITE_API int sqlite3_busy_handler(sqlite3*,int(*)(void*,int),void*);
-
-/*
-** CAPI3REF: Set A Busy Timeout
-** METHOD: sqlite3
-**
-** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
-** for a specified amount of time when a table is locked.  ^The handler
-** will sleep multiple times until at least "ms" milliseconds of sleeping
-** have accumulated.  ^After at least "ms" milliseconds of sleeping,
-** the handler returns 0 which causes [sqlite3_step()] to return
-** [SQLITE_BUSY].
-**
-** ^Calling this routine with an argument less than or equal to zero
-** turns off all busy handlers.
-**
-** ^(There can only be a single busy handler for a particular
-** [database connection] at any given moment.  If another busy handler
-** was defined  (using [sqlite3_busy_handler()]) prior to calling
-** this routine, that other busy handler is cleared.)^
-**
-** See also:  [PRAGMA busy_timeout]
-*/
-SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);
-
-/*
-** CAPI3REF: Convenience Routines For Running Queries
-** METHOD: sqlite3
-**
-** This is a legacy interface that is preserved for backwards compatibility.
-** Use of this interface is not recommended.
-**
-** Definition: A <b>result table</b> is memory data structure created by the
-** [sqlite3_get_table()] interface.  A result table records the
-** complete query results from one or more queries.
-**
-** The table conceptually has a number of rows and columns.  But
-** these numbers are not part of the result table itself.  These
-** numbers are obtained separately.  Let N be the number of rows
-** and M be the number of columns.
-**
-** A result table is an array of pointers to zero-terminated UTF-8 strings.
-** There are (N+1)*M elements in the array.  The first M pointers point
-** to zero-terminated strings that  contain the names of the columns.
-** The remaining entries all point to query results.  NULL values result
-** in NULL pointers.  All other values are in their UTF-8 zero-terminated
-** string representation as returned by [sqlite3_column_text()].
-**
-** A result table might consist of one or more memory allocations.
-** It is not safe to pass a result table directly to [sqlite3_free()].
-** A result table should be deallocated using [sqlite3_free_table()].
-**
-** ^(As an example of the result table format, suppose a query result
-** is as follows:
-**
-** <blockquote><pre>
-**        Name        | Age
-**        -----------------------
-**        Alice       | 43
-**        Bob         | 28
-**        Cindy       | 21
-** </pre></blockquote>
-**
-** There are two columns (M==2) and three rows (N==3).  Thus the
-** result table has 8 entries.  Suppose the result table is stored
-** in an array named azResult.  Then azResult holds this content:
-**
-** <blockquote><pre>
-**        azResult&#91;0] = "Name";
-**        azResult&#91;1] = "Age";
-**        azResult&#91;2] = "Alice";
-**        azResult&#91;3] = "43";
-**        azResult&#91;4] = "Bob";
-**        azResult&#91;5] = "28";
-**        azResult&#91;6] = "Cindy";
-**        azResult&#91;7] = "21";
-** </pre></blockquote>)^
-**
-** ^The sqlite3_get_table() function evaluates one or more
-** semicolon-separated SQL statements in the zero-terminated UTF-8
-** string of its 2nd parameter and returns a result table to the
-** pointer given in its 3rd parameter.
-**
-** After the application has finished with the result from sqlite3_get_table(),
-** it must pass the result table pointer to sqlite3_free_table() in order to
-** release the memory that was malloced.  Because of the way the
-** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
-** function must not try to call [sqlite3_free()] directly.  Only
-** [sqlite3_free_table()] is able to release the memory properly and safely.
-**
-** The sqlite3_get_table() interface is implemented as a wrapper around
-** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
-** to any internal data structures of SQLite.  It uses only the public
-** interface defined here.  As a consequence, errors that occur in the
-** wrapper layer outside of the internal [sqlite3_exec()] call are not
-** reflected in subsequent calls to [sqlite3_errcode()] or
-** [sqlite3_errmsg()].
-*/
-SQLITE_API int sqlite3_get_table(
-  sqlite3 *db,          /* An open database */
-  const char *zSql,     /* SQL to be evaluated */
-  char ***pazResult,    /* Results of the query */
-  int *pnRow,           /* Number of result rows written here */
-  int *pnColumn,        /* Number of result columns written here */
-  char **pzErrmsg       /* Error msg written here */
-);
-SQLITE_API void sqlite3_free_table(char **result);
-
-/*
-** CAPI3REF: Formatted String Printing Functions
-**
-** These routines are work-alikes of the "printf()" family of functions
-** from the standard C library.
-** These routines understand most of the common formatting options from
-** the standard library printf() 
-** plus some additional non-standard formats ([%q], [%Q], [%w], and [%z]).
-** See the [built-in printf()] documentation for details.
-**
-** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
-** results into memory obtained from [sqlite3_malloc64()].
-** The strings returned by these two routines should be
-** released by [sqlite3_free()].  ^Both routines return a
-** NULL pointer if [sqlite3_malloc64()] is unable to allocate enough
-** memory to hold the resulting string.
-**
-** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
-** the standard C library.  The result is written into the
-** buffer supplied as the second parameter whose size is given by
-** the first parameter. Note that the order of the
-** first two parameters is reversed from snprintf().)^  This is an
-** historical accident that cannot be fixed without breaking
-** backwards compatibility.  ^(Note also that sqlite3_snprintf()
-** returns a pointer to its buffer instead of the number of
-** characters actually written into the buffer.)^  We admit that
-** the number of characters written would be a more useful return
-** value but we cannot change the implementation of sqlite3_snprintf()
-** now without breaking compatibility.
-**
-** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
-** guarantees that the buffer is always zero-terminated.  ^The first
-** parameter "n" is the total size of the buffer, including space for
-** the zero terminator.  So the longest string that can be completely
-** written will be n-1 characters.
-**
-** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
-**
-** See also:  [built-in printf()], [printf() SQL function]
-*/
-SQLITE_API char *sqlite3_mprintf(const char*,...);
-SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
-SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
-SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);
-
-/*
-** CAPI3REF: Memory Allocation Subsystem
-**
-** The SQLite core uses these three routines for all of its own
-** internal memory allocation needs. "Core" in the previous sentence
-** does not include operating-system specific [VFS] implementation.  The
-** Windows VFS uses native malloc() and free() for some operations.
-**
-** ^The sqlite3_malloc() routine returns a pointer to a block
-** of memory at least N bytes in length, where N is the parameter.
-** ^If sqlite3_malloc() is unable to obtain sufficient free
-** memory, it returns a NULL pointer.  ^If the parameter N to
-** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
-** a NULL pointer.
-**
-** ^The sqlite3_malloc64(N) routine works just like
-** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
-** of a signed 32-bit integer.
-**
-** ^Calling sqlite3_free() with a pointer previously returned
-** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
-** that it might be reused.  ^The sqlite3_free() routine is
-** a no-op if is called with a NULL pointer.  Passing a NULL pointer
-** to sqlite3_free() is harmless.  After being freed, memory
-** should neither be read nor written.  Even reading previously freed
-** memory might result in a segmentation fault or other severe error.
-** Memory corruption, a segmentation fault, or other severe error
-** might result if sqlite3_free() is called with a non-NULL pointer that
-** was not obtained from sqlite3_malloc() or sqlite3_realloc().
-**
-** ^The sqlite3_realloc(X,N) interface attempts to resize a
-** prior memory allocation X to be at least N bytes.
-** ^If the X parameter to sqlite3_realloc(X,N)
-** is a NULL pointer then its behavior is identical to calling
-** sqlite3_malloc(N).
-** ^If the N parameter to sqlite3_realloc(X,N) is zero or
-** negative then the behavior is exactly the same as calling
-** sqlite3_free(X).
-** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
-** of at least N bytes in size or NULL if insufficient memory is available.
-** ^If M is the size of the prior allocation, then min(N,M) bytes
-** of the prior allocation are copied into the beginning of buffer returned
-** by sqlite3_realloc(X,N) and the prior allocation is freed.
-** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
-** prior allocation is not freed.
-**
-** ^The sqlite3_realloc64(X,N) interfaces works the same as
-** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
-** of a 32-bit signed integer.
-**
-** ^If X is a memory allocation previously obtained from sqlite3_malloc(),
-** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
-** sqlite3_msize(X) returns the size of that memory allocation in bytes.
-** ^The value returned by sqlite3_msize(X) might be larger than the number
-** of bytes requested when X was allocated.  ^If X is a NULL pointer then
-** sqlite3_msize(X) returns zero.  If X points to something that is not
-** the beginning of memory allocation, or if it points to a formerly
-** valid memory allocation that has now been freed, then the behavior
-** of sqlite3_msize(X) is undefined and possibly harmful.
-**
-** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
-** sqlite3_malloc64(), and sqlite3_realloc64()
-** is always aligned to at least an 8 byte boundary, or to a
-** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
-** option is used.
-**
-** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
-** must be either NULL or else pointers obtained from a prior
-** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
-** not yet been released.
-**
-** The application must not read or write any part of
-** a block of memory after it has been released using
-** [sqlite3_free()] or [sqlite3_realloc()].
-*/
-SQLITE_API void *sqlite3_malloc(int);
-SQLITE_API void *sqlite3_malloc64(sqlite3_uint64);
-SQLITE_API void *sqlite3_realloc(void*, int);
-SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64);
-SQLITE_API void sqlite3_free(void*);
-SQLITE_API sqlite3_uint64 sqlite3_msize(void*);
-
-/*
-** CAPI3REF: Memory Allocator Statistics
-**
-** SQLite provides these two interfaces for reporting on the status
-** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
-** routines, which form the built-in memory allocation subsystem.
-**
-** ^The [sqlite3_memory_used()] routine returns the number of bytes
-** of memory currently outstanding (malloced but not freed).
-** ^The [sqlite3_memory_highwater()] routine returns the maximum
-** value of [sqlite3_memory_used()] since the high-water mark
-** was last reset.  ^The values returned by [sqlite3_memory_used()] and
-** [sqlite3_memory_highwater()] include any overhead
-** added by SQLite in its implementation of [sqlite3_malloc()],
-** but not overhead added by the any underlying system library
-** routines that [sqlite3_malloc()] may call.
-**
-** ^The memory high-water mark is reset to the current value of
-** [sqlite3_memory_used()] if and only if the parameter to
-** [sqlite3_memory_highwater()] is true.  ^The value returned
-** by [sqlite3_memory_highwater(1)] is the high-water mark
-** prior to the reset.
-*/
-SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
-SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);
-
-/*
-** CAPI3REF: Pseudo-Random Number Generator
-**
-** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
-** select random [ROWID | ROWIDs] when inserting new records into a table that
-** already uses the largest possible [ROWID].  The PRNG is also used for
-** the built-in random() and randomblob() SQL functions.  This interface allows
-** applications to access the same PRNG for other purposes.
-**
-** ^A call to this routine stores N bytes of randomness into buffer P.
-** ^The P parameter can be a NULL pointer.
-**
-** ^If this routine has not been previously called or if the previous
-** call had N less than one or a NULL pointer for P, then the PRNG is
-** seeded using randomness obtained from the xRandomness method of
-** the default [sqlite3_vfs] object.
-** ^If the previous call to this routine had an N of 1 or more and a
-** non-NULL P then the pseudo-randomness is generated
-** internally and without recourse to the [sqlite3_vfs] xRandomness
-** method.
-*/
-SQLITE_API void sqlite3_randomness(int N, void *P);
-
-/*
-** CAPI3REF: Compile-Time Authorization Callbacks
-** METHOD: sqlite3
-** KEYWORDS: {authorizer callback}
-**
-** ^This routine registers an authorizer callback with a particular
-** [database connection], supplied in the first argument.
-** ^The authorizer callback is invoked as SQL statements are being compiled
-** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
-** [sqlite3_prepare_v3()], [sqlite3_prepare16()], [sqlite3_prepare16_v2()],
-** and [sqlite3_prepare16_v3()].  ^At various
-** points during the compilation process, as logic is being created
-** to perform various actions, the authorizer callback is invoked to
-** see if those actions are allowed.  ^The authorizer callback should
-** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
-** specific action but allow the SQL statement to continue to be
-** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
-** rejected with an error.  ^If the authorizer callback returns
-** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
-** then the [sqlite3_prepare_v2()] or equivalent call that triggered
-** the authorizer will fail with an error message.
-**
-** When the callback returns [SQLITE_OK], that means the operation
-** requested is ok.  ^When the callback returns [SQLITE_DENY], the
-** [sqlite3_prepare_v2()] or equivalent call that triggered the
-** authorizer will fail with an error message explaining that
-** access is denied. 
-**
-** ^The first parameter to the authorizer callback is a copy of the third
-** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
-** to the callback is an integer [SQLITE_COPY | action code] that specifies
-** the particular action to be authorized. ^The third through sixth parameters
-** to the callback are either NULL pointers or zero-terminated strings
-** that contain additional details about the action to be authorized.
-** Applications must always be prepared to encounter a NULL pointer in any
-** of the third through the sixth parameters of the authorization callback.
-**
-** ^If the action code is [SQLITE_READ]
-** and the callback returns [SQLITE_IGNORE] then the
-** [prepared statement] statement is constructed to substitute
-** a NULL value in place of the table column that would have
-** been read if [SQLITE_OK] had been returned.  The [SQLITE_IGNORE]
-** return can be used to deny an untrusted user access to individual
-** columns of a table.
-** ^When a table is referenced by a [SELECT] but no column values are
-** extracted from that table (for example in a query like
-** "SELECT count(*) FROM tab") then the [SQLITE_READ] authorizer callback
-** is invoked once for that table with a column name that is an empty string.
-** ^If the action code is [SQLITE_DELETE] and the callback returns
-** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
-** [truncate optimization] is disabled and all rows are deleted individually.
-**
-** An authorizer is used when [sqlite3_prepare | preparing]
-** SQL statements from an untrusted source, to ensure that the SQL statements
-** do not try to access data they are not allowed to see, or that they do not
-** try to execute malicious statements that damage the database.  For
-** example, an application may allow a user to enter arbitrary
-** SQL queries for evaluation by a database.  But the application does
-** not want the user to be able to make arbitrary changes to the
-** database.  An authorizer could then be put in place while the
-** user-entered SQL is being [sqlite3_prepare | prepared] that
-** disallows everything except [SELECT] statements.
-**
-** Applications that need to process SQL from untrusted sources
-** might also consider lowering resource limits using [sqlite3_limit()]
-** and limiting database size using the [max_page_count] [PRAGMA]
-** in addition to using an authorizer.
-**
-** ^(Only a single authorizer can be in place on a database connection
-** at a time.  Each call to sqlite3_set_authorizer overrides the
-** previous call.)^  ^Disable the authorizer by installing a NULL callback.
-** The authorizer is disabled by default.
-**
-** The authorizer callback must not do anything that will modify
-** the database connection that invoked the authorizer callback.
-** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
-** database connections for the meaning of "modify" in this paragraph.
-**
-** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
-** statement might be re-prepared during [sqlite3_step()] due to a 
-** schema change.  Hence, the application should ensure that the
-** correct authorizer callback remains in place during the [sqlite3_step()].
-**
-** ^Note that the authorizer callback is invoked only during
-** [sqlite3_prepare()] or its variants.  Authorization is not
-** performed during statement evaluation in [sqlite3_step()], unless
-** as stated in the previous paragraph, sqlite3_step() invokes
-** sqlite3_prepare_v2() to reprepare a statement after a schema change.
-*/
-SQLITE_API int sqlite3_set_authorizer(
-  sqlite3*,
-  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
-  void *pUserData
-);
-
-/*
-** CAPI3REF: Authorizer Return Codes
-**
-** The [sqlite3_set_authorizer | authorizer callback function] must
-** return either [SQLITE_OK] or one of these two constants in order
-** to signal SQLite whether or not the action is permitted.  See the
-** [sqlite3_set_authorizer | authorizer documentation] for additional
-** information.
-**
-** Note that SQLITE_IGNORE is also used as a [conflict resolution mode]
-** returned from the [sqlite3_vtab_on_conflict()] interface.
-*/
-#define SQLITE_DENY   1   /* Abort the SQL statement with an error */
-#define SQLITE_IGNORE 2   /* Don't allow access, but don't generate an error */
-
-/*
-** CAPI3REF: Authorizer Action Codes
-**
-** The [sqlite3_set_authorizer()] interface registers a callback function
-** that is invoked to authorize certain SQL statement actions.  The
-** second parameter to the callback is an integer code that specifies
-** what action is being authorized.  These are the integer action codes that
-** the authorizer callback may be passed.
-**
-** These action code values signify what kind of operation is to be
-** authorized.  The 3rd and 4th parameters to the authorization
-** callback function will be parameters or NULL depending on which of these
-** codes is used as the second parameter.  ^(The 5th parameter to the
-** authorizer callback is the name of the database ("main", "temp",
-** etc.) if applicable.)^  ^The 6th parameter to the authorizer callback
-** is the name of the inner-most trigger or view that is responsible for
-** the access attempt or NULL if this access attempt is directly from
-** top-level SQL code.
-*/
-/******************************************* 3rd ************ 4th ***********/
-#define SQLITE_CREATE_INDEX          1   /* Index Name      Table Name      */
-#define SQLITE_CREATE_TABLE          2   /* Table Name      NULL            */
-#define SQLITE_CREATE_TEMP_INDEX     3   /* Index Name      Table Name      */
-#define SQLITE_CREATE_TEMP_TABLE     4   /* Table Name      NULL            */
-#define SQLITE_CREATE_TEMP_TRIGGER   5   /* Trigger Name    Table Name      */
-#define SQLITE_CREATE_TEMP_VIEW      6   /* View Name       NULL            */
-#define SQLITE_CREATE_TRIGGER        7   /* Trigger Name    Table Name      */
-#define SQLITE_CREATE_VIEW           8   /* View Name       NULL            */
-#define SQLITE_DELETE                9   /* Table Name      NULL            */
-#define SQLITE_DROP_INDEX           10   /* Index Name      Table Name      */
-#define SQLITE_DROP_TABLE           11   /* Table Name      NULL            */
-#define SQLITE_DROP_TEMP_INDEX      12   /* Index Name      Table Name      */
-#define SQLITE_DROP_TEMP_TABLE      13   /* Table Name      NULL            */
-#define SQLITE_DROP_TEMP_TRIGGER    14   /* Trigger Name    Table Name      */
-#define SQLITE_DROP_TEMP_VIEW       15   /* View Name       NULL            */
-#define SQLITE_DROP_TRIGGER         16   /* Trigger Name    Table Name      */
-#define SQLITE_DROP_VIEW            17   /* View Name       NULL            */
-#define SQLITE_INSERT               18   /* Table Name      NULL            */
-#define SQLITE_PRAGMA               19   /* Pragma Name     1st arg or NULL */
-#define SQLITE_READ                 20   /* Table Name      Column Name     */
-#define SQLITE_SELECT               21   /* NULL            NULL            */
-#define SQLITE_TRANSACTION          22   /* Operation       NULL            */
-#define SQLITE_UPDATE               23   /* Table Name      Column Name     */
-#define SQLITE_ATTACH               24   /* Filename        NULL            */
-#define SQLITE_DETACH               25   /* Database Name   NULL            */
-#define SQLITE_ALTER_TABLE          26   /* Database Name   Table Name      */
-#define SQLITE_REINDEX              27   /* Index Name      NULL            */
-#define SQLITE_ANALYZE              28   /* Table Name      NULL            */
-#define SQLITE_CREATE_VTABLE        29   /* Table Name      Module Name     */
-#define SQLITE_DROP_VTABLE          30   /* Table Name      Module Name     */
-#define SQLITE_FUNCTION             31   /* NULL            Function Name   */
-#define SQLITE_SAVEPOINT            32   /* Operation       Savepoint Name  */
-#define SQLITE_COPY                  0   /* No longer used */
-#define SQLITE_RECURSIVE            33   /* NULL            NULL            */
-
-/*
-** CAPI3REF: Tracing And Profiling Functions
-** METHOD: sqlite3
-**
-** These routines are deprecated. Use the [sqlite3_trace_v2()] interface
-** instead of the routines described here.
-**
-** These routines register callback functions that can be used for
-** tracing and profiling the execution of SQL statements.
-**
-** ^The callback function registered by sqlite3_trace() is invoked at
-** various times when an SQL statement is being run by [sqlite3_step()].
-** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
-** SQL statement text as the statement first begins executing.
-** ^(Additional sqlite3_trace() callbacks might occur
-** as each triggered subprogram is entered.  The callbacks for triggers
-** contain a UTF-8 SQL comment that identifies the trigger.)^
-**
-** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
-** the length of [bound parameter] expansion in the output of sqlite3_trace().
-**
-** ^The callback function registered by sqlite3_profile() is invoked
-** as each SQL statement finishes.  ^The profile callback contains
-** the original statement text and an estimate of wall-clock time
-** of how long that statement took to run.  ^The profile callback
-** time is in units of nanoseconds, however the current implementation
-** is only capable of millisecond resolution so the six least significant
-** digits in the time are meaningless.  Future versions of SQLite
-** might provide greater resolution on the profiler callback.  Invoking
-** either [sqlite3_trace()] or [sqlite3_trace_v2()] will cancel the
-** profile callback.
-*/
-SQLITE_API SQLITE_DEPRECATED void *sqlite3_trace(sqlite3*,
-   void(*xTrace)(void*,const char*), void*);
-SQLITE_API SQLITE_DEPRECATED void *sqlite3_profile(sqlite3*,
-   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
-
-/*
-** CAPI3REF: SQL Trace Event Codes
-** KEYWORDS: SQLITE_TRACE
-**
-** These constants identify classes of events that can be monitored
-** using the [sqlite3_trace_v2()] tracing logic.  The M argument
-** to [sqlite3_trace_v2(D,M,X,P)] is an OR-ed combination of one or more of
-** the following constants.  ^The first argument to the trace callback
-** is one of the following constants.
-**
-** New tracing constants may be added in future releases.
-**
-** ^A trace callback has four arguments: xCallback(T,C,P,X).
-** ^The T argument is one of the integer type codes above.
-** ^The C argument is a copy of the context pointer passed in as the
-** fourth argument to [sqlite3_trace_v2()].
-** The P and X arguments are pointers whose meanings depend on T.
-**
-** <dl>
-** [[SQLITE_TRACE_STMT]] <dt>SQLITE_TRACE_STMT</dt>
-** <dd>^An SQLITE_TRACE_STMT callback is invoked when a prepared statement
-** first begins running and possibly at other times during the
-** execution of the prepared statement, such as at the start of each
-** trigger subprogram. ^The P argument is a pointer to the
-** [prepared statement]. ^The X argument is a pointer to a string which
-** is the unexpanded SQL text of the prepared statement or an SQL comment 
-** that indicates the invocation of a trigger.  ^The callback can compute
-** the same text that would have been returned by the legacy [sqlite3_trace()]
-** interface by using the X argument when X begins with "--" and invoking
-** [sqlite3_expanded_sql(P)] otherwise.
-**
-** [[SQLITE_TRACE_PROFILE]] <dt>SQLITE_TRACE_PROFILE</dt>
-** <dd>^An SQLITE_TRACE_PROFILE callback provides approximately the same
-** information as is provided by the [sqlite3_profile()] callback.
-** ^The P argument is a pointer to the [prepared statement] and the
-** X argument points to a 64-bit integer which is the estimated of
-** the number of nanosecond that the prepared statement took to run.
-** ^The SQLITE_TRACE_PROFILE callback is invoked when the statement finishes.
-**
-** [[SQLITE_TRACE_ROW]] <dt>SQLITE_TRACE_ROW</dt>
-** <dd>^An SQLITE_TRACE_ROW callback is invoked whenever a prepared
-** statement generates a single row of result.  
-** ^The P argument is a pointer to the [prepared statement] and the
-** X argument is unused.
-**
-** [[SQLITE_TRACE_CLOSE]] <dt>SQLITE_TRACE_CLOSE</dt>
-** <dd>^An SQLITE_TRACE_CLOSE callback is invoked when a database
-** connection closes.
-** ^The P argument is a pointer to the [database connection] object
-** and the X argument is unused.
-** </dl>
-*/
-#define SQLITE_TRACE_STMT       0x01
-#define SQLITE_TRACE_PROFILE    0x02
-#define SQLITE_TRACE_ROW        0x04
-#define SQLITE_TRACE_CLOSE      0x08
-
-/*
-** CAPI3REF: SQL Trace Hook
-** METHOD: sqlite3
-**
-** ^The sqlite3_trace_v2(D,M,X,P) interface registers a trace callback
-** function X against [database connection] D, using property mask M
-** and context pointer P.  ^If the X callback is
-** NULL or if the M mask is zero, then tracing is disabled.  The
-** M argument should be the bitwise OR-ed combination of
-** zero or more [SQLITE_TRACE] constants.
-**
-** ^Each call to either sqlite3_trace() or sqlite3_trace_v2() overrides 
-** (cancels) any prior calls to sqlite3_trace() or sqlite3_trace_v2().
-**
-** ^The X callback is invoked whenever any of the events identified by 
-** mask M occur.  ^The integer return value from the callback is currently
-** ignored, though this may change in future releases.  Callback
-** implementations should return zero to ensure future compatibility.
-**
-** ^A trace callback is invoked with four arguments: callback(T,C,P,X).
-** ^The T argument is one of the [SQLITE_TRACE]
-** constants to indicate why the callback was invoked.
-** ^The C argument is a copy of the context pointer.
-** The P and X arguments are pointers whose meanings depend on T.
-**
-** The sqlite3_trace_v2() interface is intended to replace the legacy
-** interfaces [sqlite3_trace()] and [sqlite3_profile()], both of which
-** are deprecated.
-*/
-SQLITE_API int sqlite3_trace_v2(
-  sqlite3*,
-  unsigned uMask,
-  int(*xCallback)(unsigned,void*,void*,void*),
-  void *pCtx
-);
-
-/*
-** CAPI3REF: Query Progress Callbacks
-** METHOD: sqlite3
-**
-** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
-** function X to be invoked periodically during long running calls to
-** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
-** database connection D.  An example use for this
-** interface is to keep a GUI updated during a large query.
-**
-** ^The parameter P is passed through as the only parameter to the 
-** callback function X.  ^The parameter N is the approximate number of 
-** [virtual machine instructions] that are evaluated between successive
-** invocations of the callback X.  ^If N is less than one then the progress
-** handler is disabled.
-**
-** ^Only a single progress handler may be defined at one time per
-** [database connection]; setting a new progress handler cancels the
-** old one.  ^Setting parameter X to NULL disables the progress handler.
-** ^The progress handler is also disabled by setting N to a value less
-** than 1.
-**
-** ^If the progress callback returns non-zero, the operation is
-** interrupted.  This feature can be used to implement a
-** "Cancel" button on a GUI progress dialog box.
-**
-** The progress handler callback must not do anything that will modify
-** the database connection that invoked the progress handler.
-** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
-** database connections for the meaning of "modify" in this paragraph.
-**
-*/
-SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
-
-/*
-** CAPI3REF: Opening A New Database Connection
-** CONSTRUCTOR: sqlite3
-**
-** ^These routines open an SQLite database file as specified by the 
-** filename argument. ^The filename argument is interpreted as UTF-8 for
-** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
-** order for sqlite3_open16(). ^(A [database connection] handle is usually
-** returned in *ppDb, even if an error occurs.  The only exception is that
-** if SQLite is unable to allocate memory to hold the [sqlite3] object,
-** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
-** object.)^ ^(If the database is opened (and/or created) successfully, then
-** [SQLITE_OK] is returned.  Otherwise an [error code] is returned.)^ ^The
-** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
-** an English language description of the error following a failure of any
-** of the sqlite3_open() routines.
-**
-** ^The default encoding will be UTF-8 for databases created using
-** sqlite3_open() or sqlite3_open_v2().  ^The default encoding for databases
-** created using sqlite3_open16() will be UTF-16 in the native byte order.
-**
-** Whether or not an error occurs when it is opened, resources
-** associated with the [database connection] handle should be released by
-** passing it to [sqlite3_close()] when it is no longer required.
-**
-** The sqlite3_open_v2() interface works like sqlite3_open()
-** except that it accepts two additional parameters for additional control
-** over the new database connection.  ^(The flags parameter to
-** sqlite3_open_v2() must include, at a minimum, one of the following
-** three flag combinations:)^
-**
-** <dl>
-** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
-** <dd>The database is opened in read-only mode.  If the database does not
-** already exist, an error is returned.</dd>)^
-**
-** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
-** <dd>The database is opened for reading and writing if possible, or reading
-** only if the file is write protected by the operating system.  In either
-** case the database must already exist, otherwise an error is returned.</dd>)^
-**
-** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
-** <dd>The database is opened for reading and writing, and is created if
-** it does not already exist. This is the behavior that is always used for
-** sqlite3_open() and sqlite3_open16().</dd>)^
-** </dl>
-**
-** In addition to the required flags, the following optional flags are
-** also supported:
-**
-** <dl>
-** ^(<dt>[SQLITE_OPEN_URI]</dt>
-** <dd>The filename can be interpreted as a URI if this flag is set.</dd>)^
-**
-** ^(<dt>[SQLITE_OPEN_MEMORY]</dt>
-** <dd>The database will be opened as an in-memory database.  The database
-** is named by the "filename" argument for the purposes of cache-sharing,
-** if shared cache mode is enabled, but the "filename" is otherwise ignored.
-** </dd>)^
-**
-** ^(<dt>[SQLITE_OPEN_NOMUTEX]</dt>
-** <dd>The new database connection will use the "multi-thread"
-** [threading mode].)^  This means that separate threads are allowed
-** to use SQLite at the same time, as long as each thread is using
-** a different [database connection].
-**
-** ^(<dt>[SQLITE_OPEN_FULLMUTEX]</dt>
-** <dd>The new database connection will use the "serialized"
-** [threading mode].)^  This means the multiple threads can safely
-** attempt to use the same database connection at the same time.
-** (Mutexes will block any actual concurrency, but in this mode
-** there is no harm in trying.)
-**
-** ^(<dt>[SQLITE_OPEN_SHAREDCACHE]</dt>
-** <dd>The database is opened [shared cache] enabled, overriding
-** the default shared cache setting provided by
-** [sqlite3_enable_shared_cache()].)^
-**
-** ^(<dt>[SQLITE_OPEN_PRIVATECACHE]</dt>
-** <dd>The database is opened [shared cache] disabled, overriding
-** the default shared cache setting provided by
-** [sqlite3_enable_shared_cache()].)^
-**
-** [[OPEN_NOFOLLOW]] ^(<dt>[SQLITE_OPEN_NOFOLLOW]</dt>
-** <dd>The database filename is not allowed to be a symbolic link</dd>
-** </dl>)^
-**
-** If the 3rd parameter to sqlite3_open_v2() is not one of the
-** required combinations shown above optionally combined with other
-** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
-** then the behavior is undefined.
-**
-** ^The fourth parameter to sqlite3_open_v2() is the name of the
-** [sqlite3_vfs] object that defines the operating system interface that
-** the new database connection should use.  ^If the fourth parameter is
-** a NULL pointer then the default [sqlite3_vfs] object is used.
-**
-** ^If the filename is ":memory:", then a private, temporary in-memory database
-** is created for the connection.  ^This in-memory database will vanish when
-** the database connection is closed.  Future versions of SQLite might
-** make use of additional special filenames that begin with the ":" character.
-** It is recommended that when a database filename actually does begin with
-** a ":" character you should prefix the filename with a pathname such as
-** "./" to avoid ambiguity.
-**
-** ^If the filename is an empty string, then a private, temporary
-** on-disk database will be created.  ^This private database will be
-** automatically deleted as soon as the database connection is closed.
-**
-** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
-**
-** ^If [URI filename] interpretation is enabled, and the filename argument
-** begins with "file:", then the filename is interpreted as a URI. ^URI
-** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
-** set in the third argument to sqlite3_open_v2(), or if it has
-** been enabled globally using the [SQLITE_CONFIG_URI] option with the
-** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
-** URI filename interpretation is turned off
-** by default, but future releases of SQLite might enable URI filename
-** interpretation by default.  See "[URI filenames]" for additional
-** information.
-**
-** URI filenames are parsed according to RFC 3986. ^If the URI contains an
-** authority, then it must be either an empty string or the string 
-** "localhost". ^If the authority is not an empty string or "localhost", an 
-** error is returned to the caller. ^The fragment component of a URI, if 
-** present, is ignored.
-**
-** ^SQLite uses the path component of the URI as the name of the disk file
-** which contains the database. ^If the path begins with a '/' character, 
-** then it is interpreted as an absolute path. ^If the path does not begin 
-** with a '/' (meaning that the authority section is omitted from the URI)
-** then the path is interpreted as a relative path. 
-** ^(On windows, the first component of an absolute path 
-** is a drive specification (e.g. "C:").)^
-**
-** [[core URI query parameters]]
-** The query component of a URI may contain parameters that are interpreted
-** either by SQLite itself, or by a [VFS | custom VFS implementation].
-** SQLite and its built-in [VFSes] interpret the
-** following query parameters:
-**
-** <ul>
-**   <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
-**     a VFS object that provides the operating system interface that should
-**     be used to access the database file on disk. ^If this option is set to
-**     an empty string the default VFS object is used. ^Specifying an unknown
-**     VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
-**     present, then the VFS specified by the option takes precedence over
-**     the value passed as the fourth parameter to sqlite3_open_v2().
-**
-**   <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
-**     "rwc", or "memory". Attempting to set it to any other value is
-**     an error)^. 
-**     ^If "ro" is specified, then the database is opened for read-only 
-**     access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the 
-**     third argument to sqlite3_open_v2(). ^If the mode option is set to 
-**     "rw", then the database is opened for read-write (but not create) 
-**     access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had 
-**     been set. ^Value "rwc" is equivalent to setting both 
-**     SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE.  ^If the mode option is
-**     set to "memory" then a pure [in-memory database] that never reads
-**     or writes from disk is used. ^It is an error to specify a value for
-**     the mode parameter that is less restrictive than that specified by
-**     the flags passed in the third parameter to sqlite3_open_v2().
-**
-**   <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
-**     "private". ^Setting it to "shared" is equivalent to setting the
-**     SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
-**     sqlite3_open_v2(). ^Setting the cache parameter to "private" is 
-**     equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
-**     ^If sqlite3_open_v2() is used and the "cache" parameter is present in
-**     a URI filename, its value overrides any behavior requested by setting
-**     SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
-**
-**  <li> <b>psow</b>: ^The psow parameter indicates whether or not the
-**     [powersafe overwrite] property does or does not apply to the
-**     storage media on which the database file resides.
-**
-**  <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
-**     which if set disables file locking in rollback journal modes.  This
-**     is useful for accessing a database on a filesystem that does not
-**     support locking.  Caution:  Database corruption might result if two
-**     or more processes write to the same database and any one of those
-**     processes uses nolock=1.
-**
-**  <li> <b>immutable</b>: ^The immutable parameter is a boolean query
-**     parameter that indicates that the database file is stored on
-**     read-only media.  ^When immutable is set, SQLite assumes that the
-**     database file cannot be changed, even by a process with higher
-**     privilege, and so the database is opened read-only and all locking
-**     and change detection is disabled.  Caution: Setting the immutable
-**     property on a database file that does in fact change can result
-**     in incorrect query results and/or [SQLITE_CORRUPT] errors.
-**     See also: [SQLITE_IOCAP_IMMUTABLE].
-**       
-** </ul>
-**
-** ^Specifying an unknown parameter in the query component of a URI is not an
-** error.  Future versions of SQLite might understand additional query
-** parameters.  See "[query parameters with special meaning to SQLite]" for
-** additional information.
-**
-** [[URI filename examples]] <h3>URI filename examples</h3>
-**
-** <table border="1" align=center cellpadding=5>
-** <tr><th> URI filenames <th> Results
-** <tr><td> file:data.db <td> 
-**          Open the file "data.db" in the current directory.
-** <tr><td> file:/home/fred/data.db<br>
-**          file:///home/fred/data.db <br> 
-**          file://localhost/home/fred/data.db <br> <td> 
-**          Open the database file "/home/fred/data.db".
-** <tr><td> file://darkstar/home/fred/data.db <td> 
-**          An error. "darkstar" is not a recognized authority.
-** <tr><td style="white-space:nowrap"> 
-**          file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
-**     <td> Windows only: Open the file "data.db" on fred's desktop on drive
-**          C:. Note that the %20 escaping in this example is not strictly 
-**          necessary - space characters can be used literally
-**          in URI filenames.
-** <tr><td> file:data.db?mode=ro&cache=private <td> 
-**          Open file "data.db" in the current directory for read-only access.
-**          Regardless of whether or not shared-cache mode is enabled by
-**          default, use a private cache.
-** <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
-**          Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
-**          that uses dot-files in place of posix advisory locking.
-** <tr><td> file:data.db?mode=readonly <td> 
-**          An error. "readonly" is not a valid option for the "mode" parameter.
-** </table>
-**
-** ^URI hexadecimal escape sequences (%HH) are supported within the path and
-** query components of a URI. A hexadecimal escape sequence consists of a
-** percent sign - "%" - followed by exactly two hexadecimal digits 
-** specifying an octet value. ^Before the path or query components of a
-** URI filename are interpreted, they are encoded using UTF-8 and all 
-** hexadecimal escape sequences replaced by a single byte containing the
-** corresponding octet. If this process generates an invalid UTF-8 encoding,
-** the results are undefined.
-**
-** <b>Note to Windows users:</b>  The encoding used for the filename argument
-** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
-** codepage is currently defined.  Filenames containing international
-** characters must be converted to UTF-8 prior to passing them into
-** sqlite3_open() or sqlite3_open_v2().
-**
-** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
-** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
-** features that require the use of temporary files may fail.
-**
-** See also: [sqlite3_temp_directory]
-*/
-SQLITE_API int sqlite3_open(
-  const char *filename,   /* Database filename (UTF-8) */
-  sqlite3 **ppDb          /* OUT: SQLite db handle */
-);
-SQLITE_API int sqlite3_open16(
-  const void *filename,   /* Database filename (UTF-16) */
-  sqlite3 **ppDb          /* OUT: SQLite db handle */
-);
-SQLITE_API int sqlite3_open_v2(
-  const char *filename,   /* Database filename (UTF-8) */
-  sqlite3 **ppDb,         /* OUT: SQLite db handle */
-  int flags,              /* Flags */
-  const char *zVfs        /* Name of VFS module to use */
-);
-
-/*
-** CAPI3REF: Obtain Values For URI Parameters
-**
-** These are utility routines, useful to [VFS|custom VFS implementations],
-** that check if a database file was a URI that contained a specific query 
-** parameter, and if so obtains the value of that query parameter.
-**
-** The first parameter to these interfaces (hereafter referred to
-** as F) must be one of:
-** <ul>
-** <li> A database filename pointer created by the SQLite core and
-** passed into the xOpen() method of a VFS implemention, or
-** <li> A filename obtained from [sqlite3_db_filename()], or
-** <li> A new filename constructed using [sqlite3_create_filename()].
-** </ul>
-** If the F parameter is not one of the above, then the behavior is
-** undefined and probably undesirable.  Older versions of SQLite were
-** more tolerant of invalid F parameters than newer versions.
-**
-** If F is a suitable filename (as described in the previous paragraph)
-** and if P is the name of the query parameter, then
-** sqlite3_uri_parameter(F,P) returns the value of the P
-** parameter if it exists or a NULL pointer if P does not appear as a 
-** query parameter on F.  If P is a query parameter of F and it
-** has no explicit value, then sqlite3_uri_parameter(F,P) returns
-** a pointer to an empty string.
-**
-** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
-** parameter and returns true (1) or false (0) according to the value
-** of P.  The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
-** value of query parameter P is one of "yes", "true", or "on" in any
-** case or if the value begins with a non-zero number.  The 
-** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
-** query parameter P is one of "no", "false", or "off" in any case or
-** if the value begins with a numeric zero.  If P is not a query
-** parameter on F or if the value of P does not match any of the
-** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
-**
-** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
-** 64-bit signed integer and returns that integer, or D if P does not
-** exist.  If the value of P is something other than an integer, then
-** zero is returned.
-**
-** The sqlite3_uri_key(F,N) returns a pointer to the name (not
-** the value) of the N-th query parameter for filename F, or a NULL
-** pointer if N is less than zero or greater than the number of query
-** parameters minus 1.  The N value is zero-based so N should be 0 to obtain
-** the name of the first query parameter, 1 for the second parameter, and
-** so forth.
-** 
-** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
-** sqlite3_uri_boolean(F,P,B) returns B.  If F is not a NULL pointer and
-** is not a database file pathname pointer that the SQLite core passed
-** into the xOpen VFS method, then the behavior of this routine is undefined
-** and probably undesirable.
-**
-** Beginning with SQLite [version 3.31.0] ([dateof:3.31.0]) the input F
-** parameter can also be the name of a rollback journal file or WAL file
-** in addition to the main database file.  Prior to version 3.31.0, these
-** routines would only work if F was the name of the main database file.
-** When the F parameter is the name of the rollback journal or WAL file,
-** it has access to all the same query parameters as were found on the
-** main database file.
-**
-** See the [URI filename] documentation for additional information.
-*/
-SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam);
-SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
-SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64);
-SQLITE_API const char *sqlite3_uri_key(const char *zFilename, int N);
-
-/*
-** CAPI3REF:  Translate filenames
-**
-** These routines are available to [VFS|custom VFS implementations] for
-** translating filenames between the main database file, the journal file,
-** and the WAL file.
-**
-** If F is the name of an sqlite database file, journal file, or WAL file
-** passed by the SQLite core into the VFS, then sqlite3_filename_database(F)
-** returns the name of the corresponding database file.
-**
-** If F is the name of an sqlite database file, journal file, or WAL file
-** passed by the SQLite core into the VFS, or if F is a database filename
-** obtained from [sqlite3_db_filename()], then sqlite3_filename_journal(F)
-** returns the name of the corresponding rollback journal file.
-**
-** If F is the name of an sqlite database file, journal file, or WAL file
-** that was passed by the SQLite core into the VFS, or if F is a database
-** filename obtained from [sqlite3_db_filename()], then
-** sqlite3_filename_wal(F) returns the name of the corresponding
-** WAL file.
-**
-** In all of the above, if F is not the name of a database, journal or WAL
-** filename passed into the VFS from the SQLite core and F is not the
-** return value from [sqlite3_db_filename()], then the result is
-** undefined and is likely a memory access violation.
-*/
-SQLITE_API const char *sqlite3_filename_database(const char*);
-SQLITE_API const char *sqlite3_filename_journal(const char*);
-SQLITE_API const char *sqlite3_filename_wal(const char*);
-
-/*
-** CAPI3REF:  Database File Corresponding To A Journal
-**
-** ^If X is the name of a rollback or WAL-mode journal file that is
-** passed into the xOpen method of [sqlite3_vfs], then 
-** sqlite3_database_file_object(X) returns a pointer to the [sqlite3_file]
-** object that represents the main database file.
-**
-** This routine is intended for use in custom [VFS] implementations
-** only.  It is not a general-purpose interface.
-** The argument sqlite3_file_object(X) must be a filename pointer that
-** has been passed into [sqlite3_vfs].xOpen method where the 
-** flags parameter to xOpen contains one of the bits
-** [SQLITE_OPEN_MAIN_JOURNAL] or [SQLITE_OPEN_WAL].  Any other use
-** of this routine results in undefined and probably undesirable
-** behavior.
-*/
-SQLITE_API sqlite3_file *sqlite3_database_file_object(const char*);
-
-/*
-** CAPI3REF: Create and Destroy VFS Filenames
-**
-** These interfces are provided for use by [VFS shim] implementations and
-** are not useful outside of that context.
-**
-** The sqlite3_create_filename(D,J,W,N,P) allocates memory to hold a version of
-** database filename D with corresponding journal file J and WAL file W and
-** with N URI parameters key/values pairs in the array P.  The result from
-** sqlite3_create_filename(D,J,W,N,P) is a pointer to a database filename that
-** is safe to pass to routines like:
-** <ul>
-** <li> [sqlite3_uri_parameter()],
-** <li> [sqlite3_uri_boolean()],
-** <li> [sqlite3_uri_int64()],
-** <li> [sqlite3_uri_key()], 
-** <li> [sqlite3_filename_database()],
-** <li> [sqlite3_filename_journal()], or
-** <li> [sqlite3_filename_wal()].
-** </ul>
-** If a memory allocation error occurs, sqlite3_create_filename() might
-** return a NULL pointer.  The memory obtained from sqlite3_create_filename(X)
-** must be released by a corresponding call to sqlite3_free_filename(Y).
-**
-** The P parameter in sqlite3_create_filename(D,J,W,N,P) should be an array
-** of 2*N pointers to strings.  Each pair of pointers in this array corresponds
-** to a key and value for a query parameter.  The P parameter may be a NULL
-** pointer if N is zero.  None of the 2*N pointers in the P array may be
-** NULL pointers and key pointers should not be empty strings.
-** None of the D, J, or W parameters to sqlite3_create_filename(D,J,W,N,P) may
-** be NULL pointers, though they can be empty strings.
-**
-** The sqlite3_free_filename(Y) routine releases a memory allocation
-** previously obtained from sqlite3_create_filename().  Invoking
-** sqlite3_free_filename(Y) where Y is a NULL pointer is a harmless no-op.
-**
-** If the Y parameter to sqlite3_free_filename(Y) is anything other
-** than a NULL pointer or a pointer previously acquired from
-** sqlite3_create_filename(), then bad things such as heap
-** corruption or segfaults may occur. The value Y should not be 
-** used again after sqlite3_free_filename(Y) has been called.  This means
-** that if the [sqlite3_vfs.xOpen()] method of a VFS has been called using Y,
-** then the corresponding [sqlite3_module.xClose() method should also be
-** invoked prior to calling sqlite3_free_filename(Y).
-*/
-SQLITE_API char *sqlite3_create_filename(
-  const char *zDatabase,
-  const char *zJournal,
-  const char *zWal,
-  int nParam,
-  const char **azParam
-);
-SQLITE_API void sqlite3_free_filename(char*);
-
-/*
-** CAPI3REF: Error Codes And Messages
-** METHOD: sqlite3
-**
-** ^If the most recent sqlite3_* API call associated with 
-** [database connection] D failed, then the sqlite3_errcode(D) interface
-** returns the numeric [result code] or [extended result code] for that
-** API call.
-** ^The sqlite3_extended_errcode()
-** interface is the same except that it always returns the 
-** [extended result code] even when extended result codes are
-** disabled.
-**
-** The values returned by sqlite3_errcode() and/or
-** sqlite3_extended_errcode() might change with each API call.
-** Except, there are some interfaces that are guaranteed to never
-** change the value of the error code.  The error-code preserving
-** interfaces are:
-**
-** <ul>
-** <li> sqlite3_errcode()
-** <li> sqlite3_extended_errcode()
-** <li> sqlite3_errmsg()
-** <li> sqlite3_errmsg16()
-** </ul>
-**
-** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
-** text that describes the error, as either UTF-8 or UTF-16 respectively.
-** ^(Memory to hold the error message string is managed internally.
-** The application does not need to worry about freeing the result.
-** However, the error string might be overwritten or deallocated by
-** subsequent calls to other SQLite interface functions.)^
-**
-** ^The sqlite3_errstr() interface returns the English-language text
-** that describes the [result code], as UTF-8.
-** ^(Memory to hold the error message string is managed internally
-** and must not be freed by the application)^.
-**
-** When the serialized [threading mode] is in use, it might be the
-** case that a second error occurs on a separate thread in between
-** the time of the first error and the call to these interfaces.
-** When that happens, the second error will be reported since these
-** interfaces always report the most recent result.  To avoid
-** this, each thread can obtain exclusive use of the [database connection] D
-** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
-** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
-** all calls to the interfaces listed here are completed.
-**
-** If an interface fails with SQLITE_MISUSE, that means the interface
-** was invoked incorrectly by the application.  In that case, the
-** error code and message may or may not be set.
-*/
-SQLITE_API int sqlite3_errcode(sqlite3 *db);
-SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
-SQLITE_API const char *sqlite3_errmsg(sqlite3*);
-SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
-SQLITE_API const char *sqlite3_errstr(int);
-
-/*
-** CAPI3REF: Prepared Statement Object
-** KEYWORDS: {prepared statement} {prepared statements}
-**
-** An instance of this object represents a single SQL statement that
-** has been compiled into binary form and is ready to be evaluated.
-**
-** Think of each SQL statement as a separate computer program.  The
-** original SQL text is source code.  A prepared statement object 
-** is the compiled object code.  All SQL must be converted into a
-** prepared statement before it can be run.
-**
-** The life-cycle of a prepared statement object usually goes like this:
-**
-** <ol>
-** <li> Create the prepared statement object using [sqlite3_prepare_v2()].
-** <li> Bind values to [parameters] using the sqlite3_bind_*()
-**      interfaces.
-** <li> Run the SQL by calling [sqlite3_step()] one or more times.
-** <li> Reset the prepared statement using [sqlite3_reset()] then go back
-**      to step 2.  Do this zero or more times.
-** <li> Destroy the object using [sqlite3_finalize()].
-** </ol>
-*/
-typedef struct sqlite3_stmt sqlite3_stmt;
-
-/*
-** CAPI3REF: Run-time Limits
-** METHOD: sqlite3
-**
-** ^(This interface allows the size of various constructs to be limited
-** on a connection by connection basis.  The first parameter is the
-** [database connection] whose limit is to be set or queried.  The
-** second parameter is one of the [limit categories] that define a
-** class of constructs to be size limited.  The third parameter is the
-** new limit for that construct.)^
-**
-** ^If the new limit is a negative number, the limit is unchanged.
-** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a 
-** [limits | hard upper bound]
-** set at compile-time by a C preprocessor macro called
-** [limits | SQLITE_MAX_<i>NAME</i>].
-** (The "_LIMIT_" in the name is changed to "_MAX_".))^
-** ^Attempts to increase a limit above its hard upper bound are
-** silently truncated to the hard upper bound.
-**
-** ^Regardless of whether or not the limit was changed, the 
-** [sqlite3_limit()] interface returns the prior value of the limit.
-** ^Hence, to find the current value of a limit without changing it,
-** simply invoke this interface with the third parameter set to -1.
-**
-** Run-time limits are intended for use in applications that manage
-** both their own internal database and also databases that are controlled
-** by untrusted external sources.  An example application might be a
-** web browser that has its own databases for storing history and
-** separate databases controlled by JavaScript applications downloaded
-** off the Internet.  The internal databases can be given the
-** large, default limits.  Databases managed by external sources can
-** be given much smaller limits designed to prevent a denial of service
-** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
-** interface to further control untrusted SQL.  The size of the database
-** created by an untrusted script can be contained using the
-** [max_page_count] [PRAGMA].
-**
-** New run-time limit categories may be added in future releases.
-*/
-SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);
-
-/*
-** CAPI3REF: Run-Time Limit Categories
-** KEYWORDS: {limit category} {*limit categories}
-**
-** These constants define various performance limits
-** that can be lowered at run-time using [sqlite3_limit()].
-** The synopsis of the meanings of the various limits is shown below.
-** Additional information is available at [limits | Limits in SQLite].
-**
-** <dl>
-** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
-** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
-**
-** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
-** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
-**
-** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
-** <dd>The maximum number of columns in a table definition or in the
-** result set of a [SELECT] or the maximum number of columns in an index
-** or in an ORDER BY or GROUP BY clause.</dd>)^
-**
-** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
-** <dd>The maximum depth of the parse tree on any expression.</dd>)^
-**
-** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
-** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
-**
-** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
-** <dd>The maximum number of instructions in a virtual machine program
-** used to implement an SQL statement.  If [sqlite3_prepare_v2()] or
-** the equivalent tries to allocate space for more than this many opcodes
-** in a single prepared statement, an SQLITE_NOMEM error is returned.</dd>)^
-**
-** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
-** <dd>The maximum number of arguments on a function.</dd>)^
-**
-** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
-** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
-**
-** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
-** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
-** <dd>The maximum length of the pattern argument to the [LIKE] or
-** [GLOB] operators.</dd>)^
-**
-** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
-** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
-** <dd>The maximum index number of any [parameter] in an SQL statement.)^
-**
-** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
-** <dd>The maximum depth of recursion for triggers.</dd>)^
-**
-** [[SQLITE_LIMIT_WORKER_THREADS]] ^(<dt>SQLITE_LIMIT_WORKER_THREADS</dt>
-** <dd>The maximum number of auxiliary worker threads that a single
-** [prepared statement] may start.</dd>)^
-** </dl>
-*/
-#define SQLITE_LIMIT_LENGTH                    0
-#define SQLITE_LIMIT_SQL_LENGTH                1
-#define SQLITE_LIMIT_COLUMN                    2
-#define SQLITE_LIMIT_EXPR_DEPTH                3
-#define SQLITE_LIMIT_COMPOUND_SELECT           4
-#define SQLITE_LIMIT_VDBE_OP                   5
-#define SQLITE_LIMIT_FUNCTION_ARG              6
-#define SQLITE_LIMIT_ATTACHED                  7
-#define SQLITE_LIMIT_LIKE_PATTERN_LENGTH       8
-#define SQLITE_LIMIT_VARIABLE_NUMBER           9
-#define SQLITE_LIMIT_TRIGGER_DEPTH            10
-#define SQLITE_LIMIT_WORKER_THREADS           11
-
-/*
-** CAPI3REF: Prepare Flags
-**
-** These constants define various flags that can be passed into
-** "prepFlags" parameter of the [sqlite3_prepare_v3()] and
-** [sqlite3_prepare16_v3()] interfaces.
-**
-** New flags may be added in future releases of SQLite.
-**
-** <dl>
-** [[SQLITE_PREPARE_PERSISTENT]] ^(<dt>SQLITE_PREPARE_PERSISTENT</dt>
-** <dd>The SQLITE_PREPARE_PERSISTENT flag is a hint to the query planner
-** that the prepared statement will be retained for a long time and
-** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
-** and [sqlite3_prepare16_v3()] assume that the prepared statement will 
-** be used just once or at most a few times and then destroyed using
-** [sqlite3_finalize()] relatively soon. The current implementation acts
-** on this hint by avoiding the use of [lookaside memory] so as not to
-** deplete the limited store of lookaside memory. Future versions of
-** SQLite may act on this hint differently.
-**
-** [[SQLITE_PREPARE_NORMALIZE]] <dt>SQLITE_PREPARE_NORMALIZE</dt>
-** <dd>The SQLITE_PREPARE_NORMALIZE flag is a no-op. This flag used
-** to be required for any prepared statement that wanted to use the
-** [sqlite3_normalized_sql()] interface.  However, the
-** [sqlite3_normalized_sql()] interface is now available to all
-** prepared statements, regardless of whether or not they use this
-** flag.
-**
-** [[SQLITE_PREPARE_NO_VTAB]] <dt>SQLITE_PREPARE_NO_VTAB</dt>
-** <dd>The SQLITE_PREPARE_NO_VTAB flag causes the SQL compiler
-** to return an error (error code SQLITE_ERROR) if the statement uses
-** any virtual tables.
-** </dl>
-*/
-#define SQLITE_PREPARE_PERSISTENT              0x01
-#define SQLITE_PREPARE_NORMALIZE               0x02
-#define SQLITE_PREPARE_NO_VTAB                 0x04
-
-/*
-** CAPI3REF: Compiling An SQL Statement
-** KEYWORDS: {SQL statement compiler}
-** METHOD: sqlite3
-** CONSTRUCTOR: sqlite3_stmt
-**
-** To execute an SQL statement, it must first be compiled into a byte-code
-** program using one of these routines.  Or, in other words, these routines
-** are constructors for the [prepared statement] object.
-**
-** The preferred routine to use is [sqlite3_prepare_v2()].  The
-** [sqlite3_prepare()] interface is legacy and should be avoided.
-** [sqlite3_prepare_v3()] has an extra "prepFlags" option that is used
-** for special purposes.
-**
-** The use of the UTF-8 interfaces is preferred, as SQLite currently
-** does all parsing using UTF-8.  The UTF-16 interfaces are provided
-** as a convenience.  The UTF-16 interfaces work by converting the
-** input text into UTF-8, then invoking the corresponding UTF-8 interface.
-**
-** The first argument, "db", is a [database connection] obtained from a
-** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
-** [sqlite3_open16()].  The database connection must not have been closed.
-**
-** The second argument, "zSql", is the statement to be compiled, encoded
-** as either UTF-8 or UTF-16.  The sqlite3_prepare(), sqlite3_prepare_v2(),
-** and sqlite3_prepare_v3()
-** interfaces use UTF-8, and sqlite3_prepare16(), sqlite3_prepare16_v2(),
-** and sqlite3_prepare16_v3() use UTF-16.
-**
-** ^If the nByte argument is negative, then zSql is read up to the
-** first zero terminator. ^If nByte is positive, then it is the
-** number of bytes read from zSql.  ^If nByte is zero, then no prepared
-** statement is generated.
-** If the caller knows that the supplied string is nul-terminated, then
-** there is a small performance advantage to passing an nByte parameter that
-** is the number of bytes in the input string <i>including</i>
-** the nul-terminator.
-**
-** ^If pzTail is not NULL then *pzTail is made to point to the first byte
-** past the end of the first SQL statement in zSql.  These routines only
-** compile the first statement in zSql, so *pzTail is left pointing to
-** what remains uncompiled.
-**
-** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
-** executed using [sqlite3_step()].  ^If there is an error, *ppStmt is set
-** to NULL.  ^If the input text contains no SQL (if the input is an empty
-** string or a comment) then *ppStmt is set to NULL.
-** The calling procedure is responsible for deleting the compiled
-** SQL statement using [sqlite3_finalize()] after it has finished with it.
-** ppStmt may not be NULL.
-**
-** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
-** otherwise an [error code] is returned.
-**
-** The sqlite3_prepare_v2(), sqlite3_prepare_v3(), sqlite3_prepare16_v2(),
-** and sqlite3_prepare16_v3() interfaces are recommended for all new programs.
-** The older interfaces (sqlite3_prepare() and sqlite3_prepare16())
-** are retained for backwards compatibility, but their use is discouraged.
-** ^In the "vX" interfaces, the prepared statement
-** that is returned (the [sqlite3_stmt] object) contains a copy of the
-** original SQL text. This causes the [sqlite3_step()] interface to
-** behave differently in three ways:
-**
-** <ol>
-** <li>
-** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
-** always used to do, [sqlite3_step()] will automatically recompile the SQL
-** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
-** retries will occur before sqlite3_step() gives up and returns an error.
-** </li>
-**
-** <li>
-** ^When an error occurs, [sqlite3_step()] will return one of the detailed
-** [error codes] or [extended error codes].  ^The legacy behavior was that
-** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
-** and the application would have to make a second call to [sqlite3_reset()]
-** in order to find the underlying cause of the problem. With the "v2" prepare
-** interfaces, the underlying reason for the error is returned immediately.
-** </li>
-**
-** <li>
-** ^If the specific value bound to a [parameter | host parameter] in the 
-** WHERE clause might influence the choice of query plan for a statement,
-** then the statement will be automatically recompiled, as if there had been 
-** a schema change, on the first [sqlite3_step()] call following any change
-** to the [sqlite3_bind_text | bindings] of that [parameter]. 
-** ^The specific value of a WHERE-clause [parameter] might influence the 
-** choice of query plan if the parameter is the left-hand side of a [LIKE]
-** or [GLOB] operator or if the parameter is compared to an indexed column
-** and the [SQLITE_ENABLE_STAT4] compile-time option is enabled.
-** </li>
-** </ol>
-**
-** <p>^sqlite3_prepare_v3() differs from sqlite3_prepare_v2() only in having
-** the extra prepFlags parameter, which is a bit array consisting of zero or
-** more of the [SQLITE_PREPARE_PERSISTENT|SQLITE_PREPARE_*] flags.  ^The
-** sqlite3_prepare_v2() interface works exactly the same as
-** sqlite3_prepare_v3() with a zero prepFlags parameter.
-*/
-SQLITE_API int sqlite3_prepare(
-  sqlite3 *db,            /* Database handle */
-  const char *zSql,       /* SQL statement, UTF-8 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-SQLITE_API int sqlite3_prepare_v2(
-  sqlite3 *db,            /* Database handle */
-  const char *zSql,       /* SQL statement, UTF-8 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-SQLITE_API int sqlite3_prepare_v3(
-  sqlite3 *db,            /* Database handle */
-  const char *zSql,       /* SQL statement, UTF-8 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-SQLITE_API int sqlite3_prepare16(
-  sqlite3 *db,            /* Database handle */
-  const void *zSql,       /* SQL statement, UTF-16 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-SQLITE_API int sqlite3_prepare16_v2(
-  sqlite3 *db,            /* Database handle */
-  const void *zSql,       /* SQL statement, UTF-16 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-SQLITE_API int sqlite3_prepare16_v3(
-  sqlite3 *db,            /* Database handle */
-  const void *zSql,       /* SQL statement, UTF-16 encoded */
-  int nByte,              /* Maximum length of zSql in bytes. */
-  unsigned int prepFlags, /* Zero or more SQLITE_PREPARE_ flags */
-  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
-  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
-);
-
-/*
-** CAPI3REF: Retrieving Statement SQL
-** METHOD: sqlite3_stmt
-**
-** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
-** SQL text used to create [prepared statement] P if P was
-** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
-** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
-** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
-** string containing the SQL text of prepared statement P with
-** [bound parameters] expanded.
-** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
-** string containing the normalized SQL text of prepared statement P.  The
-** semantics used to normalize a SQL statement are unspecified and subject
-** to change.  At a minimum, literal values will be replaced with suitable
-** placeholders.
-**
-** ^(For example, if a prepared statement is created using the SQL
-** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
-** and parameter :xyz is unbound, then sqlite3_sql() will return
-** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
-** will return "SELECT 2345,NULL".)^
-**
-** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
-** is available to hold the result, or if the result would exceed the
-** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
-**
-** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
-** bound parameter expansions.  ^The [SQLITE_OMIT_TRACE] compile-time
-** option causes sqlite3_expanded_sql() to always return NULL.
-**
-** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
-** are managed by SQLite and are automatically freed when the prepared
-** statement is finalized.
-** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
-** is obtained from [sqlite3_malloc()] and must be free by the application
-** by passing it to [sqlite3_free()].
-*/
-SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
-SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);
-SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Determine If An SQL Statement Writes The Database
-** METHOD: sqlite3_stmt
-**
-** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
-** and only if the [prepared statement] X makes no direct changes to
-** the content of the database file.
-**
-** Note that [application-defined SQL functions] or
-** [virtual tables] might change the database indirectly as a side effect.  
-** ^(For example, if an application defines a function "eval()" that 
-** calls [sqlite3_exec()], then the following SQL statement would
-** change the database file through side-effects:
-**
-** <blockquote><pre>
-**    SELECT eval('DELETE FROM t1') FROM t2;
-** </pre></blockquote>
-**
-** But because the [SELECT] statement does not change the database file
-** directly, sqlite3_stmt_readonly() would still return true.)^
-**
-** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
-** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
-** since the statements themselves do not actually modify the database but
-** rather they control the timing of when other statements modify the 
-** database.  ^The [ATTACH] and [DETACH] statements also cause
-** sqlite3_stmt_readonly() to return true since, while those statements
-** change the configuration of a database connection, they do not make 
-** changes to the content of the database files on disk.
-** ^The sqlite3_stmt_readonly() interface returns true for [BEGIN] since
-** [BEGIN] merely sets internal flags, but the [BEGIN|BEGIN IMMEDIATE] and
-** [BEGIN|BEGIN EXCLUSIVE] commands do touch the database and so
-** sqlite3_stmt_readonly() returns false for those commands.
-*/
-SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Query The EXPLAIN Setting For A Prepared Statement
-** METHOD: sqlite3_stmt
-**
-** ^The sqlite3_stmt_isexplain(S) interface returns 1 if the
-** prepared statement S is an EXPLAIN statement, or 2 if the
-** statement S is an EXPLAIN QUERY PLAN.
-** ^The sqlite3_stmt_isexplain(S) interface returns 0 if S is
-** an ordinary statement or a NULL pointer.
-*/
-SQLITE_API int sqlite3_stmt_isexplain(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Determine If A Prepared Statement Has Been Reset
-** METHOD: sqlite3_stmt
-**
-** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
-** [prepared statement] S has been stepped at least once using 
-** [sqlite3_step(S)] but has neither run to completion (returned
-** [SQLITE_DONE] from [sqlite3_step(S)]) nor
-** been reset using [sqlite3_reset(S)].  ^The sqlite3_stmt_busy(S)
-** interface returns false if S is a NULL pointer.  If S is not a 
-** NULL pointer and is not a pointer to a valid [prepared statement]
-** object, then the behavior is undefined and probably undesirable.
-**
-** This interface can be used in combination [sqlite3_next_stmt()]
-** to locate all prepared statements associated with a database 
-** connection that are in need of being reset.  This can be used,
-** for example, in diagnostic routines to search for prepared 
-** statements that are holding a transaction open.
-*/
-SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Dynamically Typed Value Object
-** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
-**
-** SQLite uses the sqlite3_value object to represent all values
-** that can be stored in a database table. SQLite uses dynamic typing
-** for the values it stores.  ^Values stored in sqlite3_value objects
-** can be integers, floating point values, strings, BLOBs, or NULL.
-**
-** An sqlite3_value object may be either "protected" or "unprotected".
-** Some interfaces require a protected sqlite3_value.  Other interfaces
-** will accept either a protected or an unprotected sqlite3_value.
-** Every interface that accepts sqlite3_value arguments specifies
-** whether or not it requires a protected sqlite3_value.  The
-** [sqlite3_value_dup()] interface can be used to construct a new 
-** protected sqlite3_value from an unprotected sqlite3_value.
-**
-** The terms "protected" and "unprotected" refer to whether or not
-** a mutex is held.  An internal mutex is held for a protected
-** sqlite3_value object but no mutex is held for an unprotected
-** sqlite3_value object.  If SQLite is compiled to be single-threaded
-** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
-** or if SQLite is run in one of reduced mutex modes 
-** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
-** then there is no distinction between protected and unprotected
-** sqlite3_value objects and they can be used interchangeably.  However,
-** for maximum code portability it is recommended that applications
-** still make the distinction between protected and unprotected
-** sqlite3_value objects even when not strictly required.
-**
-** ^The sqlite3_value objects that are passed as parameters into the
-** implementation of [application-defined SQL functions] are protected.
-** ^The sqlite3_value object returned by
-** [sqlite3_column_value()] is unprotected.
-** Unprotected sqlite3_value objects may only be used as arguments
-** to [sqlite3_result_value()], [sqlite3_bind_value()], and
-** [sqlite3_value_dup()].
-** The [sqlite3_value_blob | sqlite3_value_type()] family of
-** interfaces require protected sqlite3_value objects.
-*/
-typedef struct sqlite3_value sqlite3_value;
-
-/*
-** CAPI3REF: SQL Function Context Object
-**
-** The context in which an SQL function executes is stored in an
-** sqlite3_context object.  ^A pointer to an sqlite3_context object
-** is always first parameter to [application-defined SQL functions].
-** The application-defined SQL function implementation will pass this
-** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
-** [sqlite3_aggregate_context()], [sqlite3_user_data()],
-** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
-** and/or [sqlite3_set_auxdata()].
-*/
-typedef struct sqlite3_context sqlite3_context;
-
-/*
-** CAPI3REF: Binding Values To Prepared Statements
-** KEYWORDS: {host parameter} {host parameters} {host parameter name}
-** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
-** METHOD: sqlite3_stmt
-**
-** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
-** literals may be replaced by a [parameter] that matches one of following
-** templates:
-**
-** <ul>
-** <li>  ?
-** <li>  ?NNN
-** <li>  :VVV
-** <li>  @VVV
-** <li>  $VVV
-** </ul>
-**
-** In the templates above, NNN represents an integer literal,
-** and VVV represents an alphanumeric identifier.)^  ^The values of these
-** parameters (also called "host parameter names" or "SQL parameters")
-** can be set using the sqlite3_bind_*() routines defined here.
-**
-** ^The first argument to the sqlite3_bind_*() routines is always
-** a pointer to the [sqlite3_stmt] object returned from
-** [sqlite3_prepare_v2()] or its variants.
-**
-** ^The second argument is the index of the SQL parameter to be set.
-** ^The leftmost SQL parameter has an index of 1.  ^When the same named
-** SQL parameter is used more than once, second and subsequent
-** occurrences have the same index as the first occurrence.
-** ^The index for named parameters can be looked up using the
-** [sqlite3_bind_parameter_index()] API if desired.  ^The index
-** for "?NNN" parameters is the value of NNN.
-** ^The NNN value must be between 1 and the [sqlite3_limit()]
-** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 32766).
-**
-** ^The third argument is the value to bind to the parameter.
-** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
-** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
-** is ignored and the end result is the same as sqlite3_bind_null().
-** ^If the third parameter to sqlite3_bind_text() is not NULL, then
-** it should be a pointer to well-formed UTF8 text.
-** ^If the third parameter to sqlite3_bind_text16() is not NULL, then
-** it should be a pointer to well-formed UTF16 text.
-** ^If the third parameter to sqlite3_bind_text64() is not NULL, then
-** it should be a pointer to a well-formed unicode string that is
-** either UTF8 if the sixth parameter is SQLITE_UTF8, or UTF16
-** otherwise.
-**
-** [[byte-order determination rules]] ^The byte-order of
-** UTF16 input text is determined by the byte-order mark (BOM, U+FEFF)
-** found in first character, which is removed, or in the absence of a BOM
-** the byte order is the native byte order of the host
-** machine for sqlite3_bind_text16() or the byte order specified in
-** the 6th parameter for sqlite3_bind_text64().)^ 
-** ^If UTF16 input text contains invalid unicode
-** characters, then SQLite might change those invalid characters
-** into the unicode replacement character: U+FFFD.
-**
-** ^(In those routines that have a fourth argument, its value is the
-** number of bytes in the parameter.  To be clear: the value is the
-** number of <u>bytes</u> in the value, not the number of characters.)^
-** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
-** is negative, then the length of the string is
-** the number of bytes up to the first zero terminator.
-** If the fourth parameter to sqlite3_bind_blob() is negative, then
-** the behavior is undefined.
-** If a non-negative fourth parameter is provided to sqlite3_bind_text()
-** or sqlite3_bind_text16() or sqlite3_bind_text64() then
-** that parameter must be the byte offset
-** where the NUL terminator would occur assuming the string were NUL
-** terminated.  If any NUL characters occurs at byte offsets less than 
-** the value of the fourth parameter then the resulting string value will
-** contain embedded NULs.  The result of expressions involving strings
-** with embedded NULs is undefined.
-**
-** ^The fifth argument to the BLOB and string binding interfaces
-** is a destructor used to dispose of the BLOB or
-** string after SQLite has finished with it.  ^The destructor is called
-** to dispose of the BLOB or string even if the call to the bind API fails,
-** except the destructor is not called if the third parameter is a NULL
-** pointer or the fourth parameter is negative.
-** ^If the fifth argument is
-** the special value [SQLITE_STATIC], then SQLite assumes that the
-** information is in static, unmanaged space and does not need to be freed.
-** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
-** SQLite makes its own private copy of the data immediately, before
-** the sqlite3_bind_*() routine returns.
-**
-** ^The sixth argument to sqlite3_bind_text64() must be one of
-** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
-** to specify the encoding of the text in the third parameter.  If
-** the sixth argument to sqlite3_bind_text64() is not one of the
-** allowed values shown above, or if the text encoding is different
-** from the encoding specified by the sixth parameter, then the behavior
-** is undefined.
-**
-** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
-** is filled with zeroes.  ^A zeroblob uses a fixed amount of memory
-** (just an integer to hold its size) while it is being processed.
-** Zeroblobs are intended to serve as placeholders for BLOBs whose
-** content is later written using
-** [sqlite3_blob_open | incremental BLOB I/O] routines.
-** ^A negative value for the zeroblob results in a zero-length BLOB.
-**
-** ^The sqlite3_bind_pointer(S,I,P,T,D) routine causes the I-th parameter in
-** [prepared statement] S to have an SQL value of NULL, but to also be
-** associated with the pointer P of type T.  ^D is either a NULL pointer or
-** a pointer to a destructor function for P. ^SQLite will invoke the
-** destructor D with a single argument of P when it is finished using
-** P.  The T parameter should be a static string, preferably a string
-** literal. The sqlite3_bind_pointer() routine is part of the
-** [pointer passing interface] added for SQLite 3.20.0.
-**
-** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
-** for the [prepared statement] or with a prepared statement for which
-** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
-** then the call will return [SQLITE_MISUSE].  If any sqlite3_bind_()
-** routine is passed a [prepared statement] that has been finalized, the
-** result is undefined and probably harmful.
-**
-** ^Bindings are not cleared by the [sqlite3_reset()] routine.
-** ^Unbound parameters are interpreted as NULL.
-**
-** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
-** [error code] if anything goes wrong.
-** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
-** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
-** [SQLITE_MAX_LENGTH].
-** ^[SQLITE_RANGE] is returned if the parameter
-** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.
-**
-** See also: [sqlite3_bind_parameter_count()],
-** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
-*/
-SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
-SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
-                        void(*)(void*));
-SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
-SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
-SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
-SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
-SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
-SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
-SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
-                         void(*)(void*), unsigned char encoding);
-SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
-SQLITE_API int sqlite3_bind_pointer(sqlite3_stmt*, int, void*, const char*,void(*)(void*));
-SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
-SQLITE_API int sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64);
-
-/*
-** CAPI3REF: Number Of SQL Parameters
-** METHOD: sqlite3_stmt
-**
-** ^This routine can be used to find the number of [SQL parameters]
-** in a [prepared statement].  SQL parameters are tokens of the
-** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
-** placeholders for values that are [sqlite3_bind_blob | bound]
-** to the parameters at a later time.
-**
-** ^(This routine actually returns the index of the largest (rightmost)
-** parameter. For all forms except ?NNN, this will correspond to the
-** number of unique parameters.  If parameters of the ?NNN form are used,
-** there may be gaps in the list.)^
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_name()], and
-** [sqlite3_bind_parameter_index()].
-*/
-SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Name Of A Host Parameter
-** METHOD: sqlite3_stmt
-**
-** ^The sqlite3_bind_parameter_name(P,N) interface returns
-** the name of the N-th [SQL parameter] in the [prepared statement] P.
-** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
-** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
-** respectively.
-** In other words, the initial ":" or "$" or "@" or "?"
-** is included as part of the name.)^
-** ^Parameters of the form "?" without a following integer have no name
-** and are referred to as "nameless" or "anonymous parameters".
-**
-** ^The first host parameter has an index of 1, not 0.
-**
-** ^If the value N is out of range or if the N-th parameter is
-** nameless, then NULL is returned.  ^The returned string is
-** always in UTF-8 encoding even if the named parameter was
-** originally specified as UTF-16 in [sqlite3_prepare16()],
-** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_count()], and
-** [sqlite3_bind_parameter_index()].
-*/
-SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);
-
-/*
-** CAPI3REF: Index Of A Parameter With A Given Name
-** METHOD: sqlite3_stmt
-**
-** ^Return the index of an SQL parameter given its name.  ^The
-** index value returned is suitable for use as the second
-** parameter to [sqlite3_bind_blob|sqlite3_bind()].  ^A zero
-** is returned if no matching parameter is found.  ^The parameter
-** name must be given in UTF-8 even if the original statement
-** was prepared from UTF-16 text using [sqlite3_prepare16_v2()] or
-** [sqlite3_prepare16_v3()].
-**
-** See also: [sqlite3_bind_blob|sqlite3_bind()],
-** [sqlite3_bind_parameter_count()], and
-** [sqlite3_bind_parameter_name()].
-*/
-SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
-
-/*
-** CAPI3REF: Reset All Bindings On A Prepared Statement
-** METHOD: sqlite3_stmt
-**
-** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
-** the [sqlite3_bind_blob | bindings] on a [prepared statement].
-** ^Use this routine to reset all host parameters to NULL.
-*/
-SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Number Of Columns In A Result Set
-** METHOD: sqlite3_stmt
-**
-** ^Return the number of columns in the result set returned by the
-** [prepared statement]. ^If this routine returns 0, that means the 
-** [prepared statement] returns no data (for example an [UPDATE]).
-** ^However, just because this routine returns a positive number does not
-** mean that one or more rows of data will be returned.  ^A SELECT statement
-** will always have a positive sqlite3_column_count() but depending on the
-** WHERE clause constraints and the table content, it might return no rows.
-**
-** See also: [sqlite3_data_count()]
-*/
-SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Column Names In A Result Set
-** METHOD: sqlite3_stmt
-**
-** ^These routines return the name assigned to a particular column
-** in the result set of a [SELECT] statement.  ^The sqlite3_column_name()
-** interface returns a pointer to a zero-terminated UTF-8 string
-** and sqlite3_column_name16() returns a pointer to a zero-terminated
-** UTF-16 string.  ^The first parameter is the [prepared statement]
-** that implements the [SELECT] statement. ^The second parameter is the
-** column number.  ^The leftmost column is number 0.
-**
-** ^The returned string pointer is valid until either the [prepared statement]
-** is destroyed by [sqlite3_finalize()] or until the statement is automatically
-** reprepared by the first call to [sqlite3_step()] for a particular run
-** or until the next call to
-** sqlite3_column_name() or sqlite3_column_name16() on the same column.
-**
-** ^If sqlite3_malloc() fails during the processing of either routine
-** (for example during a conversion from UTF-8 to UTF-16) then a
-** NULL pointer is returned.
-**
-** ^The name of a result column is the value of the "AS" clause for
-** that column, if there is an AS clause.  If there is no AS clause
-** then the name of the column is unspecified and may change from
-** one release of SQLite to the next.
-*/
-SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
-SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);
-
-/*
-** CAPI3REF: Source Of Data In A Query Result
-** METHOD: sqlite3_stmt
-**
-** ^These routines provide a means to determine the database, table, and
-** table column that is the origin of a particular result column in
-** [SELECT] statement.
-** ^The name of the database or table or column can be returned as
-** either a UTF-8 or UTF-16 string.  ^The _database_ routines return
-** the database name, the _table_ routines return the table name, and
-** the origin_ routines return the column name.
-** ^The returned string is valid until the [prepared statement] is destroyed
-** using [sqlite3_finalize()] or until the statement is automatically
-** reprepared by the first call to [sqlite3_step()] for a particular run
-** or until the same information is requested
-** again in a different encoding.
-**
-** ^The names returned are the original un-aliased names of the
-** database, table, and column.
-**
-** ^The first argument to these interfaces is a [prepared statement].
-** ^These functions return information about the Nth result column returned by
-** the statement, where N is the second function argument.
-** ^The left-most column is column 0 for these routines.
-**
-** ^If the Nth column returned by the statement is an expression or
-** subquery and is not a column value, then all of these functions return
-** NULL.  ^These routines might also return NULL if a memory allocation error
-** occurs.  ^Otherwise, they return the name of the attached database, table,
-** or column that query result column was extracted from.
-**
-** ^As with all other SQLite APIs, those whose names end with "16" return
-** UTF-16 encoded strings and the other functions return UTF-8.
-**
-** ^These APIs are only available if the library was compiled with the
-** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
-**
-** If two or more threads call one or more
-** [sqlite3_column_database_name | column metadata interfaces]
-** for the same [prepared statement] and result column
-** at the same time then the results are undefined.
-*/
-SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
-SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
-SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
-SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
-SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
-SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);
-
-/*
-** CAPI3REF: Declared Datatype Of A Query Result
-** METHOD: sqlite3_stmt
-**
-** ^(The first parameter is a [prepared statement].
-** If this statement is a [SELECT] statement and the Nth column of the
-** returned result set of that [SELECT] is a table column (not an
-** expression or subquery) then the declared type of the table
-** column is returned.)^  ^If the Nth column of the result set is an
-** expression or subquery, then a NULL pointer is returned.
-** ^The returned string is always UTF-8 encoded.
-**
-** ^(For example, given the database schema:
-**
-** CREATE TABLE t1(c1 VARIANT);
-**
-** and the following statement to be compiled:
-**
-** SELECT c1 + 1, c1 FROM t1;
-**
-** this routine would return the string "VARIANT" for the second result
-** column (i==1), and a NULL pointer for the first result column (i==0).)^
-**
-** ^SQLite uses dynamic run-time typing.  ^So just because a column
-** is declared to contain a particular type does not mean that the
-** data stored in that column is of the declared type.  SQLite is
-** strongly typed, but the typing is dynamic not static.  ^Type
-** is associated with individual values, not with the containers
-** used to hold those values.
-*/
-SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
-SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
-
-/*
-** CAPI3REF: Evaluate An SQL Statement
-** METHOD: sqlite3_stmt
-**
-** After a [prepared statement] has been prepared using any of
-** [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], [sqlite3_prepare16_v2()],
-** or [sqlite3_prepare16_v3()] or one of the legacy
-** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
-** must be called one or more times to evaluate the statement.
-**
-** The details of the behavior of the sqlite3_step() interface depend
-** on whether the statement was prepared using the newer "vX" interfaces
-** [sqlite3_prepare_v3()], [sqlite3_prepare_v2()], [sqlite3_prepare16_v3()],
-** [sqlite3_prepare16_v2()] or the older legacy
-** interfaces [sqlite3_prepare()] and [sqlite3_prepare16()].  The use of the
-** new "vX" interface is recommended for new applications but the legacy
-** interface will continue to be supported.
-**
-** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
-** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
-** ^With the "v2" interface, any of the other [result codes] or
-** [extended result codes] might be returned as well.
-**
-** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
-** database locks it needs to do its job.  ^If the statement is a [COMMIT]
-** or occurs outside of an explicit transaction, then you can retry the
-** statement.  If the statement is not a [COMMIT] and occurs within an
-** explicit transaction then you should rollback the transaction before
-** continuing.
-**
-** ^[SQLITE_DONE] means that the statement has finished executing
-** successfully.  sqlite3_step() should not be called again on this virtual
-** machine without first calling [sqlite3_reset()] to reset the virtual
-** machine back to its initial state.
-**
-** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
-** is returned each time a new row of data is ready for processing by the
-** caller. The values may be accessed using the [column access functions].
-** sqlite3_step() is called again to retrieve the next row of data.
-**
-** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
-** violation) has occurred.  sqlite3_step() should not be called again on
-** the VM. More information may be found by calling [sqlite3_errmsg()].
-** ^With the legacy interface, a more specific error code (for example,
-** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
-** can be obtained by calling [sqlite3_reset()] on the
-** [prepared statement].  ^In the "v2" interface,
-** the more specific error code is returned directly by sqlite3_step().
-**
-** [SQLITE_MISUSE] means that the this routine was called inappropriately.
-** Perhaps it was called on a [prepared statement] that has
-** already been [sqlite3_finalize | finalized] or on one that had
-** previously returned [SQLITE_ERROR] or [SQLITE_DONE].  Or it could
-** be the case that the same database connection is being used by two or
-** more threads at the same moment in time.
-**
-** For all versions of SQLite up to and including 3.6.23.1, a call to
-** [sqlite3_reset()] was required after sqlite3_step() returned anything
-** other than [SQLITE_ROW] before any subsequent invocation of
-** sqlite3_step().  Failure to reset the prepared statement using 
-** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
-** sqlite3_step().  But after [version 3.6.23.1] ([dateof:3.6.23.1],
-** sqlite3_step() began
-** calling [sqlite3_reset()] automatically in this circumstance rather
-** than returning [SQLITE_MISUSE].  This is not considered a compatibility
-** break because any application that ever receives an SQLITE_MISUSE error
-** is broken by definition.  The [SQLITE_OMIT_AUTORESET] compile-time option
-** can be used to restore the legacy behavior.
-**
-** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
-** API always returns a generic error code, [SQLITE_ERROR], following any
-** error other than [SQLITE_BUSY] and [SQLITE_MISUSE].  You must call
-** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
-** specific [error codes] that better describes the error.
-** We admit that this is a goofy design.  The problem has been fixed
-** with the "v2" interface.  If you prepare all of your SQL statements
-** using [sqlite3_prepare_v3()] or [sqlite3_prepare_v2()]
-** or [sqlite3_prepare16_v2()] or [sqlite3_prepare16_v3()] instead
-** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
-** then the more specific [error codes] are returned directly
-** by sqlite3_step().  The use of the "vX" interfaces is recommended.
-*/
-SQLITE_API int sqlite3_step(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Number of columns in a result set
-** METHOD: sqlite3_stmt
-**
-** ^The sqlite3_data_count(P) interface returns the number of columns in the
-** current row of the result set of [prepared statement] P.
-** ^If prepared statement P does not have results ready to return
-** (via calls to the [sqlite3_column_int | sqlite3_column()] family of
-** interfaces) then sqlite3_data_count(P) returns 0.
-** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
-** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
-** [sqlite3_step](P) returned [SQLITE_DONE].  ^The sqlite3_data_count(P)
-** will return non-zero if previous call to [sqlite3_step](P) returned
-** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
-** where it always returns zero since each step of that multi-step
-** pragma returns 0 columns of data.
-**
-** See also: [sqlite3_column_count()]
-*/
-SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Fundamental Datatypes
-** KEYWORDS: SQLITE_TEXT
-**
-** ^(Every value in SQLite has one of five fundamental datatypes:
-**
-** <ul>
-** <li> 64-bit signed integer
-** <li> 64-bit IEEE floating point number
-** <li> string
-** <li> BLOB
-** <li> NULL
-** </ul>)^
-**
-** These constants are codes for each of those types.
-**
-** Note that the SQLITE_TEXT constant was also used in SQLite version 2
-** for a completely different meaning.  Software that links against both
-** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
-** SQLITE_TEXT.
-*/
-#define SQLITE_INTEGER  1
-#define SQLITE_FLOAT    2
-#define SQLITE_BLOB     4
-#define SQLITE_NULL     5
-#ifdef SQLITE_TEXT
-# undef SQLITE_TEXT
-#else
-# define SQLITE_TEXT     3
-#endif
-#define SQLITE3_TEXT     3
-
-/*
-** CAPI3REF: Result Values From A Query
-** KEYWORDS: {column access functions}
-** METHOD: sqlite3_stmt
-**
-** <b>Summary:</b>
-** <blockquote><table border=0 cellpadding=0 cellspacing=0>
-** <tr><td><b>sqlite3_column_blob</b><td>&rarr;<td>BLOB result
-** <tr><td><b>sqlite3_column_double</b><td>&rarr;<td>REAL result
-** <tr><td><b>sqlite3_column_int</b><td>&rarr;<td>32-bit INTEGER result
-** <tr><td><b>sqlite3_column_int64</b><td>&rarr;<td>64-bit INTEGER result
-** <tr><td><b>sqlite3_column_text</b><td>&rarr;<td>UTF-8 TEXT result
-** <tr><td><b>sqlite3_column_text16</b><td>&rarr;<td>UTF-16 TEXT result
-** <tr><td><b>sqlite3_column_value</b><td>&rarr;<td>The result as an 
-** [sqlite3_value|unprotected sqlite3_value] object.
-** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
-** <tr><td><b>sqlite3_column_bytes</b><td>&rarr;<td>Size of a BLOB
-** or a UTF-8 TEXT result in bytes
-** <tr><td><b>sqlite3_column_bytes16&nbsp;&nbsp;</b>
-** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
-** TEXT in bytes
-** <tr><td><b>sqlite3_column_type</b><td>&rarr;<td>Default
-** datatype of the result
-** </table></blockquote>
-**
-** <b>Details:</b>
-**
-** ^These routines return information about a single column of the current
-** result row of a query.  ^In every case the first argument is a pointer
-** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
-** that was returned from [sqlite3_prepare_v2()] or one of its variants)
-** and the second argument is the index of the column for which information
-** should be returned. ^The leftmost column of the result set has the index 0.
-** ^The number of columns in the result can be determined using
-** [sqlite3_column_count()].
-**
-** If the SQL statement does not currently point to a valid row, or if the
-** column index is out of range, the result is undefined.
-** These routines may only be called when the most recent call to
-** [sqlite3_step()] has returned [SQLITE_ROW] and neither
-** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
-** If any of these routines are called after [sqlite3_reset()] or
-** [sqlite3_finalize()] or after [sqlite3_step()] has returned
-** something other than [SQLITE_ROW], the results are undefined.
-** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
-** are called from a different thread while any of these routines
-** are pending, then the results are undefined.
-**
-** The first six interfaces (_blob, _double, _int, _int64, _text, and _text16)
-** each return the value of a result column in a specific data format.  If
-** the result column is not initially in the requested format (for example,
-** if the query returns an integer but the sqlite3_column_text() interface
-** is used to extract the value) then an automatic type conversion is performed.
-**
-** ^The sqlite3_column_type() routine returns the
-** [SQLITE_INTEGER | datatype code] for the initial data type
-** of the result column.  ^The returned value is one of [SQLITE_INTEGER],
-** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].
-** The return value of sqlite3_column_type() can be used to decide which
-** of the first six interface should be used to extract the column value.
-** The value returned by sqlite3_column_type() is only meaningful if no
-** automatic type conversions have occurred for the value in question.  
-** After a type conversion, the result of calling sqlite3_column_type()
-** is undefined, though harmless.  Future
-** versions of SQLite may change the behavior of sqlite3_column_type()
-** following a type conversion.
-**
-** If the result is a BLOB or a TEXT string, then the sqlite3_column_bytes()
-** or sqlite3_column_bytes16() interfaces can be used to determine the size
-** of that BLOB or string.
-**
-** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
-** routine returns the number of bytes in that BLOB or string.
-** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
-** the string to UTF-8 and then returns the number of bytes.
-** ^If the result is a numeric value then sqlite3_column_bytes() uses
-** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
-** the number of bytes in that string.
-** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
-**
-** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
-** routine returns the number of bytes in that BLOB or string.
-** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
-** the string to UTF-16 and then returns the number of bytes.
-** ^If the result is a numeric value then sqlite3_column_bytes16() uses
-** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
-** the number of bytes in that string.
-** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
-**
-** ^The values returned by [sqlite3_column_bytes()] and 
-** [sqlite3_column_bytes16()] do not include the zero terminators at the end
-** of the string.  ^For clarity: the values returned by
-** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
-** bytes in the string, not the number of characters.
-**
-** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
-** even empty strings, are always zero-terminated.  ^The return
-** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
-**
-** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an
-** [unprotected sqlite3_value] object.  In a multithreaded environment,
-** an unprotected sqlite3_value object may only be used safely with
-** [sqlite3_bind_value()] and [sqlite3_result_value()].
-** If the [unprotected sqlite3_value] object returned by
-** [sqlite3_column_value()] is used in any other way, including calls
-** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
-** or [sqlite3_value_bytes()], the behavior is not threadsafe.
-** Hence, the sqlite3_column_value() interface
-** is normally only useful within the implementation of 
-** [application-defined SQL functions] or [virtual tables], not within
-** top-level application code.
-**
-** The these routines may attempt to convert the datatype of the result.
-** ^For example, if the internal representation is FLOAT and a text result
-** is requested, [sqlite3_snprintf()] is used internally to perform the
-** conversion automatically.  ^(The following table details the conversions
-** that are applied:
-**
-** <blockquote>
-** <table border="1">
-** <tr><th> Internal<br>Type <th> Requested<br>Type <th>  Conversion
-**
-** <tr><td>  NULL    <td> INTEGER   <td> Result is 0
-** <tr><td>  NULL    <td>  FLOAT    <td> Result is 0.0
-** <tr><td>  NULL    <td>   TEXT    <td> Result is a NULL pointer
-** <tr><td>  NULL    <td>   BLOB    <td> Result is a NULL pointer
-** <tr><td> INTEGER  <td>  FLOAT    <td> Convert from integer to float
-** <tr><td> INTEGER  <td>   TEXT    <td> ASCII rendering of the integer
-** <tr><td> INTEGER  <td>   BLOB    <td> Same as INTEGER->TEXT
-** <tr><td>  FLOAT   <td> INTEGER   <td> [CAST] to INTEGER
-** <tr><td>  FLOAT   <td>   TEXT    <td> ASCII rendering of the float
-** <tr><td>  FLOAT   <td>   BLOB    <td> [CAST] to BLOB
-** <tr><td>  TEXT    <td> INTEGER   <td> [CAST] to INTEGER
-** <tr><td>  TEXT    <td>  FLOAT    <td> [CAST] to REAL
-** <tr><td>  TEXT    <td>   BLOB    <td> No change
-** <tr><td>  BLOB    <td> INTEGER   <td> [CAST] to INTEGER
-** <tr><td>  BLOB    <td>  FLOAT    <td> [CAST] to REAL
-** <tr><td>  BLOB    <td>   TEXT    <td> Add a zero terminator if needed
-** </table>
-** </blockquote>)^
-**
-** Note that when type conversions occur, pointers returned by prior
-** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
-** sqlite3_column_text16() may be invalidated.
-** Type conversions and pointer invalidations might occur
-** in the following cases:
-**
-** <ul>
-** <li> The initial content is a BLOB and sqlite3_column_text() or
-**      sqlite3_column_text16() is called.  A zero-terminator might
-**      need to be added to the string.</li>
-** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
-**      sqlite3_column_text16() is called.  The content must be converted
-**      to UTF-16.</li>
-** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
-**      sqlite3_column_text() is called.  The content must be converted
-**      to UTF-8.</li>
-** </ul>
-**
-** ^Conversions between UTF-16be and UTF-16le are always done in place and do
-** not invalidate a prior pointer, though of course the content of the buffer
-** that the prior pointer references will have been modified.  Other kinds
-** of conversion are done in place when it is possible, but sometimes they
-** are not possible and in those cases prior pointers are invalidated.
-**
-** The safest policy is to invoke these routines
-** in one of the following ways:
-**
-** <ul>
-**  <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
-**  <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
-**  <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
-** </ul>
-**
-** In other words, you should call sqlite3_column_text(),
-** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
-** into the desired format, then invoke sqlite3_column_bytes() or
-** sqlite3_column_bytes16() to find the size of the result.  Do not mix calls
-** to sqlite3_column_text() or sqlite3_column_blob() with calls to
-** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
-** with calls to sqlite3_column_bytes().
-**
-** ^The pointers returned are valid until a type conversion occurs as
-** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
-** [sqlite3_finalize()] is called.  ^The memory space used to hold strings
-** and BLOBs is freed automatically.  Do not pass the pointers returned
-** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
-** [sqlite3_free()].
-**
-** As long as the input parameters are correct, these routines will only
-** fail if an out-of-memory error occurs during a format conversion.
-** Only the following subset of interfaces are subject to out-of-memory
-** errors:
-**
-** <ul>
-** <li> sqlite3_column_blob()
-** <li> sqlite3_column_text()
-** <li> sqlite3_column_text16()
-** <li> sqlite3_column_bytes()
-** <li> sqlite3_column_bytes16()
-** </ul>
-**
-** If an out-of-memory error occurs, then the return value from these
-** routines is the same as if the column had contained an SQL NULL value.
-** Valid SQL NULL returns can be distinguished from out-of-memory errors
-** by invoking the [sqlite3_errcode()] immediately after the suspect
-** return value is obtained and before any
-** other SQLite interface is called on the same [database connection].
-*/
-SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
-SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
-SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
-SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
-SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
-SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
-SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);
-SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
-SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
-SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
-
-/*
-** CAPI3REF: Destroy A Prepared Statement Object
-** DESTRUCTOR: sqlite3_stmt
-**
-** ^The sqlite3_finalize() function is called to delete a [prepared statement].
-** ^If the most recent evaluation of the statement encountered no errors
-** or if the statement is never been evaluated, then sqlite3_finalize() returns
-** SQLITE_OK.  ^If the most recent evaluation of statement S failed, then
-** sqlite3_finalize(S) returns the appropriate [error code] or
-** [extended error code].
-**
-** ^The sqlite3_finalize(S) routine can be called at any point during
-** the life cycle of [prepared statement] S:
-** before statement S is ever evaluated, after
-** one or more calls to [sqlite3_reset()], or after any call
-** to [sqlite3_step()] regardless of whether or not the statement has
-** completed execution.
-**
-** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
-**
-** The application must finalize every [prepared statement] in order to avoid
-** resource leaks.  It is a grievous error for the application to try to use
-** a prepared statement after it has been finalized.  Any use of a prepared
-** statement after it has been finalized can result in undefined and
-** undesirable behavior such as segfaults and heap corruption.
-*/
-SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Reset A Prepared Statement Object
-** METHOD: sqlite3_stmt
-**
-** The sqlite3_reset() function is called to reset a [prepared statement]
-** object back to its initial state, ready to be re-executed.
-** ^Any SQL statement variables that had values bound to them using
-** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
-** Use [sqlite3_clear_bindings()] to reset the bindings.
-**
-** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
-** back to the beginning of its program.
-**
-** ^If the most recent call to [sqlite3_step(S)] for the
-** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
-** or if [sqlite3_step(S)] has never before been called on S,
-** then [sqlite3_reset(S)] returns [SQLITE_OK].
-**
-** ^If the most recent call to [sqlite3_step(S)] for the
-** [prepared statement] S indicated an error, then
-** [sqlite3_reset(S)] returns an appropriate [error code].
-**
-** ^The [sqlite3_reset(S)] interface does not change the values
-** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
-*/
-SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Create Or Redefine SQL Functions
-** KEYWORDS: {function creation routines}
-** METHOD: sqlite3
-**
-** ^These functions (collectively known as "function creation routines")
-** are used to add SQL functions or aggregates or to redefine the behavior
-** of existing SQL functions or aggregates. The only differences between
-** the three "sqlite3_create_function*" routines are the text encoding 
-** expected for the second parameter (the name of the function being 
-** created) and the presence or absence of a destructor callback for
-** the application data pointer. Function sqlite3_create_window_function()
-** is similar, but allows the user to supply the extra callback functions
-** needed by [aggregate window functions].
-**
-** ^The first parameter is the [database connection] to which the SQL
-** function is to be added.  ^If an application uses more than one database
-** connection then application-defined SQL functions must be added
-** to each database connection separately.
-**
-** ^The second parameter is the name of the SQL function to be created or
-** redefined.  ^The length of the name is limited to 255 bytes in a UTF-8
-** representation, exclusive of the zero-terminator.  ^Note that the name
-** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.  
-** ^Any attempt to create a function with a longer name
-** will result in [SQLITE_MISUSE] being returned.
-**
-** ^The third parameter (nArg)
-** is the number of arguments that the SQL function or
-** aggregate takes. ^If this parameter is -1, then the SQL function or
-** aggregate may take any number of arguments between 0 and the limit
-** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]).  If the third
-** parameter is less than -1 or greater than 127 then the behavior is
-** undefined.
-**
-** ^The fourth parameter, eTextRep, specifies what
-** [SQLITE_UTF8 | text encoding] this SQL function prefers for
-** its parameters.  The application should set this parameter to
-** [SQLITE_UTF16LE] if the function implementation invokes 
-** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the
-** implementation invokes [sqlite3_value_text16be()] on an input, or
-** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8]
-** otherwise.  ^The same SQL function may be registered multiple times using
-** different preferred text encodings, with different implementations for
-** each encoding.
-** ^When multiple implementations of the same function are available, SQLite
-** will pick the one that involves the least amount of data conversion.
-**
-** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
-** to signal that the function will always return the same result given
-** the same inputs within a single SQL statement.  Most SQL functions are
-** deterministic.  The built-in [random()] SQL function is an example of a
-** function that is not deterministic.  The SQLite query planner is able to
-** perform additional optimizations on deterministic functions, so use
-** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
-**
-** ^The fourth parameter may also optionally include the [SQLITE_DIRECTONLY]
-** flag, which if present prevents the function from being invoked from
-** within VIEWs, TRIGGERs, CHECK constraints, generated column expressions,
-** index expressions, or the WHERE clause of partial indexes.
-**
-** <span style="background-color:#ffff90;">
-** For best security, the [SQLITE_DIRECTONLY] flag is recommended for
-** all application-defined SQL functions that do not need to be
-** used inside of triggers, view, CHECK constraints, or other elements of
-** the database schema.  This flags is especially recommended for SQL 
-** functions that have side effects or reveal internal application state.
-** Without this flag, an attacker might be able to modify the schema of
-** a database file to include invocations of the function with parameters
-** chosen by the attacker, which the application will then execute when
-** the database file is opened and read.
-** </span>
-**
-** ^(The fifth parameter is an arbitrary pointer.  The implementation of the
-** function can gain access to this pointer using [sqlite3_user_data()].)^
-**
-** ^The sixth, seventh and eighth parameters passed to the three
-** "sqlite3_create_function*" functions, xFunc, xStep and xFinal, are
-** pointers to C-language functions that implement the SQL function or
-** aggregate. ^A scalar SQL function requires an implementation of the xFunc
-** callback only; NULL pointers must be passed as the xStep and xFinal
-** parameters. ^An aggregate SQL function requires an implementation of xStep
-** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
-** SQL function or aggregate, pass NULL pointers for all three function
-** callbacks.
-**
-** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue 
-** and xInverse) passed to sqlite3_create_window_function are pointers to
-** C-language callbacks that implement the new function. xStep and xFinal
-** must both be non-NULL. xValue and xInverse may either both be NULL, in
-** which case a regular aggregate function is created, or must both be 
-** non-NULL, in which case the new function may be used as either an aggregate
-** or aggregate window function. More details regarding the implementation
-** of aggregate window functions are 
-** [user-defined window functions|available here].
-**
-** ^(If the final parameter to sqlite3_create_function_v2() or
-** sqlite3_create_window_function() is not NULL, then it is destructor for
-** the application data pointer. The destructor is invoked when the function 
-** is deleted, either by being overloaded or when the database connection 
-** closes.)^ ^The destructor is also invoked if the call to 
-** sqlite3_create_function_v2() fails.  ^When the destructor callback is
-** invoked, it is passed a single argument which is a copy of the application
-** data pointer which was the fifth parameter to sqlite3_create_function_v2().
-**
-** ^It is permitted to register multiple implementations of the same
-** functions with the same name but with either differing numbers of
-** arguments or differing preferred text encodings.  ^SQLite will use
-** the implementation that most closely matches the way in which the
-** SQL function is used.  ^A function implementation with a non-negative
-** nArg parameter is a better match than a function implementation with
-** a negative nArg.  ^A function where the preferred text encoding
-** matches the database encoding is a better
-** match than a function where the encoding is different.  
-** ^A function where the encoding difference is between UTF16le and UTF16be
-** is a closer match than a function where the encoding difference is
-** between UTF8 and UTF16.
-**
-** ^Built-in functions may be overloaded by new application-defined functions.
-**
-** ^An application-defined function is permitted to call other
-** SQLite interfaces.  However, such calls must not
-** close the database connection nor finalize or reset the prepared
-** statement in which the function is running.
-*/
-SQLITE_API int sqlite3_create_function(
-  sqlite3 *db,
-  const char *zFunctionName,
-  int nArg,
-  int eTextRep,
-  void *pApp,
-  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
-  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
-  void (*xFinal)(sqlite3_context*)
-);
-SQLITE_API int sqlite3_create_function16(
-  sqlite3 *db,
-  const void *zFunctionName,
-  int nArg,
-  int eTextRep,
-  void *pApp,
-  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
-  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
-  void (*xFinal)(sqlite3_context*)
-);
-SQLITE_API int sqlite3_create_function_v2(
-  sqlite3 *db,
-  const char *zFunctionName,
-  int nArg,
-  int eTextRep,
-  void *pApp,
-  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
-  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
-  void (*xFinal)(sqlite3_context*),
-  void(*xDestroy)(void*)
-);
-SQLITE_API int sqlite3_create_window_function(
-  sqlite3 *db,
-  const char *zFunctionName,
-  int nArg,
-  int eTextRep,
-  void *pApp,
-  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
-  void (*xFinal)(sqlite3_context*),
-  void (*xValue)(sqlite3_context*),
-  void (*xInverse)(sqlite3_context*,int,sqlite3_value**),
-  void(*xDestroy)(void*)
-);
-
-/*
-** CAPI3REF: Text Encodings
-**
-** These constant define integer codes that represent the various
-** text encodings supported by SQLite.
-*/
-#define SQLITE_UTF8           1    /* IMP: R-37514-35566 */
-#define SQLITE_UTF16LE        2    /* IMP: R-03371-37637 */
-#define SQLITE_UTF16BE        3    /* IMP: R-51971-34154 */
-#define SQLITE_UTF16          4    /* Use native byte order */
-#define SQLITE_ANY            5    /* Deprecated */
-#define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */
-
-/*
-** CAPI3REF: Function Flags
-**
-** These constants may be ORed together with the 
-** [SQLITE_UTF8 | preferred text encoding] as the fourth argument
-** to [sqlite3_create_function()], [sqlite3_create_function16()], or
-** [sqlite3_create_function_v2()].
-**
-** <dl>
-** [[SQLITE_DETERMINISTIC]] <dt>SQLITE_DETERMINISTIC</dt><dd>
-** The SQLITE_DETERMINISTIC flag means that the new function always gives
-** the same output when the input parameters are the same.
-** The [abs|abs() function] is deterministic, for example, but
-** [randomblob|randomblob()] is not.  Functions must
-** be deterministic in order to be used in certain contexts such as
-** with the WHERE clause of [partial indexes] or in [generated columns].
-** SQLite might also optimize deterministic functions by factoring them
-** out of inner loops.
-** </dd>
-** 
-** [[SQLITE_DIRECTONLY]] <dt>SQLITE_DIRECTONLY</dt><dd>
-** The SQLITE_DIRECTONLY flag means that the function may only be invoked
-** from top-level SQL, and cannot be used in VIEWs or TRIGGERs nor in 
-** schema structures such as [CHECK constraints], [DEFAULT clauses],
-** [expression indexes], [partial indexes], or [generated columns].
-** The SQLITE_DIRECTONLY flags is a security feature which is recommended
-** for all [application-defined SQL functions], and especially for functions
-** that have side-effects or that could potentially leak sensitive
-** information.
-** </dd>
-**
-** [[SQLITE_INNOCUOUS]] <dt>SQLITE_INNOCUOUS</dt><dd>
-** The SQLITE_INNOCUOUS flag means that the function is unlikely
-** to cause problems even if misused.  An innocuous function should have
-** no side effects and should not depend on any values other than its
-** input parameters. The [abs|abs() function] is an example of an
-** innocuous function.
-** The [load_extension() SQL function] is not innocuous because of its
-** side effects.
-** <p> SQLITE_INNOCUOUS is similar to SQLITE_DETERMINISTIC, but is not
-** exactly the same.  The [random|random() function] is an example of a
-** function that is innocuous but not deterministic.
-** <p>Some heightened security settings
-** ([SQLITE_DBCONFIG_TRUSTED_SCHEMA] and [PRAGMA trusted_schema=OFF])
-** disable the use of SQL functions inside views and triggers and in
-** schema structures such as [CHECK constraints], [DEFAULT clauses],
-** [expression indexes], [partial indexes], and [generated columns] unless
-** the function is tagged with SQLITE_INNOCUOUS.  Most built-in functions
-** are innocuous.  Developers are advised to avoid using the
-** SQLITE_INNOCUOUS flag for application-defined functions unless the
-** function has been carefully audited and found to be free of potentially
-** security-adverse side-effects and information-leaks.
-** </dd>
-**
-** [[SQLITE_SUBTYPE]] <dt>SQLITE_SUBTYPE</dt><dd>
-** The SQLITE_SUBTYPE flag indicates to SQLite that a function may call
-** [sqlite3_value_subtype()] to inspect the sub-types of its arguments.
-** Specifying this flag makes no difference for scalar or aggregate user
-** functions. However, if it is not specified for a user-defined window
-** function, then any sub-types belonging to arguments passed to the window
-** function may be discarded before the window function is called (i.e.
-** sqlite3_value_subtype() will always return 0).
-** </dd>
-** </dl>
-*/
-#define SQLITE_DETERMINISTIC    0x000000800
-#define SQLITE_DIRECTONLY       0x000080000
-#define SQLITE_SUBTYPE          0x000100000
-#define SQLITE_INNOCUOUS        0x000200000
-
-/*
-** CAPI3REF: Deprecated Functions
-** DEPRECATED
-**
-** These functions are [deprecated].  In order to maintain
-** backwards compatibility with older code, these functions continue 
-** to be supported.  However, new applications should avoid
-** the use of these functions.  To encourage programmers to avoid
-** these functions, we will not explain what they do.
-*/
-#ifndef SQLITE_OMIT_DEPRECATED
-SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
-SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
-SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
-SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
-SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
-SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
-                      void*,sqlite3_int64);
-#endif
-
-/*
-** CAPI3REF: Obtaining SQL Values
-** METHOD: sqlite3_value
-**
-** <b>Summary:</b>
-** <blockquote><table border=0 cellpadding=0 cellspacing=0>
-** <tr><td><b>sqlite3_value_blob</b><td>&rarr;<td>BLOB value
-** <tr><td><b>sqlite3_value_double</b><td>&rarr;<td>REAL value
-** <tr><td><b>sqlite3_value_int</b><td>&rarr;<td>32-bit INTEGER value
-** <tr><td><b>sqlite3_value_int64</b><td>&rarr;<td>64-bit INTEGER value
-** <tr><td><b>sqlite3_value_pointer</b><td>&rarr;<td>Pointer value
-** <tr><td><b>sqlite3_value_text</b><td>&rarr;<td>UTF-8 TEXT value
-** <tr><td><b>sqlite3_value_text16</b><td>&rarr;<td>UTF-16 TEXT value in
-** the native byteorder
-** <tr><td><b>sqlite3_value_text16be</b><td>&rarr;<td>UTF-16be TEXT value
-** <tr><td><b>sqlite3_value_text16le</b><td>&rarr;<td>UTF-16le TEXT value
-** <tr><td>&nbsp;<td>&nbsp;<td>&nbsp;
-** <tr><td><b>sqlite3_value_bytes</b><td>&rarr;<td>Size of a BLOB
-** or a UTF-8 TEXT in bytes
-** <tr><td><b>sqlite3_value_bytes16&nbsp;&nbsp;</b>
-** <td>&rarr;&nbsp;&nbsp;<td>Size of UTF-16
-** TEXT in bytes
-** <tr><td><b>sqlite3_value_type</b><td>&rarr;<td>Default
-** datatype of the value
-** <tr><td><b>sqlite3_value_numeric_type&nbsp;&nbsp;</b>
-** <td>&rarr;&nbsp;&nbsp;<td>Best numeric datatype of the value
-** <tr><td><b>sqlite3_value_nochange&nbsp;&nbsp;</b>
-** <td>&rarr;&nbsp;&nbsp;<td>True if the column is unchanged in an UPDATE
-** against a virtual table.
-** <tr><td><b>sqlite3_value_frombind&nbsp;&nbsp;</b>
-** <td>&rarr;&nbsp;&nbsp;<td>True if value originated from a [bound parameter]
-** </table></blockquote>
-**
-** <b>Details:</b>
-**
-** These routines extract type, size, and content information from
-** [protected sqlite3_value] objects.  Protected sqlite3_value objects
-** are used to pass parameter information into the functions that
-** implement [application-defined SQL functions] and [virtual tables].
-**
-** These routines work only with [protected sqlite3_value] objects.
-** Any attempt to use these routines on an [unprotected sqlite3_value]
-** is not threadsafe.
-**
-** ^These routines work just like the corresponding [column access functions]
-** except that these routines take a single [protected sqlite3_value] object
-** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
-**
-** ^The sqlite3_value_text16() interface extracts a UTF-16 string
-** in the native byte-order of the host machine.  ^The
-** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
-** extract UTF-16 strings as big-endian and little-endian respectively.
-**
-** ^If [sqlite3_value] object V was initialized 
-** using [sqlite3_bind_pointer(S,I,P,X,D)] or [sqlite3_result_pointer(C,P,X,D)]
-** and if X and Y are strings that compare equal according to strcmp(X,Y),
-** then sqlite3_value_pointer(V,Y) will return the pointer P.  ^Otherwise,
-** sqlite3_value_pointer(V,Y) returns a NULL. The sqlite3_bind_pointer() 
-** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
-**
-** ^(The sqlite3_value_type(V) interface returns the
-** [SQLITE_INTEGER | datatype code] for the initial datatype of the
-** [sqlite3_value] object V. The returned value is one of [SQLITE_INTEGER],
-** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL].)^
-** Other interfaces might change the datatype for an sqlite3_value object.
-** For example, if the datatype is initially SQLITE_INTEGER and
-** sqlite3_value_text(V) is called to extract a text value for that
-** integer, then subsequent calls to sqlite3_value_type(V) might return
-** SQLITE_TEXT.  Whether or not a persistent internal datatype conversion
-** occurs is undefined and may change from one release of SQLite to the next.
-**
-** ^(The sqlite3_value_numeric_type() interface attempts to apply
-** numeric affinity to the value.  This means that an attempt is
-** made to convert the value to an integer or floating point.  If
-** such a conversion is possible without loss of information (in other
-** words, if the value is a string that looks like a number)
-** then the conversion is performed.  Otherwise no conversion occurs.
-** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
-**
-** ^Within the [xUpdate] method of a [virtual table], the
-** sqlite3_value_nochange(X) interface returns true if and only if
-** the column corresponding to X is unchanged by the UPDATE operation
-** that the xUpdate method call was invoked to implement and if
-** and the prior [xColumn] method call that was invoked to extracted
-** the value for that column returned without setting a result (probably
-** because it queried [sqlite3_vtab_nochange()] and found that the column
-** was unchanging).  ^Within an [xUpdate] method, any value for which
-** sqlite3_value_nochange(X) is true will in all other respects appear
-** to be a NULL value.  If sqlite3_value_nochange(X) is invoked anywhere other
-** than within an [xUpdate] method call for an UPDATE statement, then
-** the return value is arbitrary and meaningless.
-**
-** ^The sqlite3_value_frombind(X) interface returns non-zero if the
-** value X originated from one of the [sqlite3_bind_int|sqlite3_bind()]
-** interfaces.  ^If X comes from an SQL literal value, or a table column,
-** or an expression, then sqlite3_value_frombind(X) returns zero.
-**
-** Please pay particular attention to the fact that the pointer returned
-** from [sqlite3_value_blob()], [sqlite3_value_text()], or
-** [sqlite3_value_text16()] can be invalidated by a subsequent call to
-** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
-** or [sqlite3_value_text16()].
-**
-** These routines must be called from the same thread as
-** the SQL function that supplied the [sqlite3_value*] parameters.
-**
-** As long as the input parameter is correct, these routines can only
-** fail if an out-of-memory error occurs during a format conversion.
-** Only the following subset of interfaces are subject to out-of-memory
-** errors:
-**
-** <ul>
-** <li> sqlite3_value_blob()
-** <li> sqlite3_value_text()
-** <li> sqlite3_value_text16()
-** <li> sqlite3_value_text16le()
-** <li> sqlite3_value_text16be()
-** <li> sqlite3_value_bytes()
-** <li> sqlite3_value_bytes16()
-** </ul>
-**
-** If an out-of-memory error occurs, then the return value from these
-** routines is the same as if the column had contained an SQL NULL value.
-** Valid SQL NULL returns can be distinguished from out-of-memory errors
-** by invoking the [sqlite3_errcode()] immediately after the suspect
-** return value is obtained and before any
-** other SQLite interface is called on the same [database connection].
-*/
-SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
-SQLITE_API double sqlite3_value_double(sqlite3_value*);
-SQLITE_API int sqlite3_value_int(sqlite3_value*);
-SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
-SQLITE_API void *sqlite3_value_pointer(sqlite3_value*, const char*);
-SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
-SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
-SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
-SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
-SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
-SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
-SQLITE_API int sqlite3_value_type(sqlite3_value*);
-SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);
-SQLITE_API int sqlite3_value_nochange(sqlite3_value*);
-SQLITE_API int sqlite3_value_frombind(sqlite3_value*);
-
-/*
-** CAPI3REF: Finding The Subtype Of SQL Values
-** METHOD: sqlite3_value
-**
-** The sqlite3_value_subtype(V) function returns the subtype for
-** an [application-defined SQL function] argument V.  The subtype
-** information can be used to pass a limited amount of context from
-** one SQL function to another.  Use the [sqlite3_result_subtype()]
-** routine to set the subtype for the return value of an SQL function.
-*/
-SQLITE_API unsigned int sqlite3_value_subtype(sqlite3_value*);
-
-/*
-** CAPI3REF: Copy And Free SQL Values
-** METHOD: sqlite3_value
-**
-** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
-** object D and returns a pointer to that copy.  ^The [sqlite3_value] returned
-** is a [protected sqlite3_value] object even if the input is not.
-** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
-** memory allocation fails.
-**
-** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
-** previously obtained from [sqlite3_value_dup()].  ^If V is a NULL pointer
-** then sqlite3_value_free(V) is a harmless no-op.
-*/
-SQLITE_API sqlite3_value *sqlite3_value_dup(const sqlite3_value*);
-SQLITE_API void sqlite3_value_free(sqlite3_value*);
-
-/*
-** CAPI3REF: Obtain Aggregate Function Context
-** METHOD: sqlite3_context
-**
-** Implementations of aggregate SQL functions use this
-** routine to allocate memory for storing their state.
-**
-** ^The first time the sqlite3_aggregate_context(C,N) routine is called 
-** for a particular aggregate function, SQLite allocates
-** N bytes of memory, zeroes out that memory, and returns a pointer
-** to the new memory. ^On second and subsequent calls to
-** sqlite3_aggregate_context() for the same aggregate function instance,
-** the same buffer is returned.  Sqlite3_aggregate_context() is normally
-** called once for each invocation of the xStep callback and then one
-** last time when the xFinal callback is invoked.  ^(When no rows match
-** an aggregate query, the xStep() callback of the aggregate function
-** implementation is never called and xFinal() is called exactly once.
-** In those cases, sqlite3_aggregate_context() might be called for the
-** first time from within xFinal().)^
-**
-** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer 
-** when first called if N is less than or equal to zero or if a memory
-** allocate error occurs.
-**
-** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
-** determined by the N parameter on first successful call.  Changing the
-** value of N in any subsequent call to sqlite3_aggregate_context() within
-** the same aggregate function instance will not resize the memory
-** allocation.)^  Within the xFinal callback, it is customary to set
-** N=0 in calls to sqlite3_aggregate_context(C,N) so that no 
-** pointless memory allocations occur.
-**
-** ^SQLite automatically frees the memory allocated by 
-** sqlite3_aggregate_context() when the aggregate query concludes.
-**
-** The first parameter must be a copy of the
-** [sqlite3_context | SQL function context] that is the first parameter
-** to the xStep or xFinal callback routine that implements the aggregate
-** function.
-**
-** This routine must be called from the same thread in which
-** the aggregate SQL function is running.
-*/
-SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);
-
-/*
-** CAPI3REF: User Data For Functions
-** METHOD: sqlite3_context
-**
-** ^The sqlite3_user_data() interface returns a copy of
-** the pointer that was the pUserData parameter (the 5th parameter)
-** of the [sqlite3_create_function()]
-** and [sqlite3_create_function16()] routines that originally
-** registered the application defined function.
-**
-** This routine must be called from the same thread in which
-** the application-defined function is running.
-*/
-SQLITE_API void *sqlite3_user_data(sqlite3_context*);
-
-/*
-** CAPI3REF: Database Connection For Functions
-** METHOD: sqlite3_context
-**
-** ^The sqlite3_context_db_handle() interface returns a copy of
-** the pointer to the [database connection] (the 1st parameter)
-** of the [sqlite3_create_function()]
-** and [sqlite3_create_function16()] routines that originally
-** registered the application defined function.
-*/
-SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);
-
-/*
-** CAPI3REF: Function Auxiliary Data
-** METHOD: sqlite3_context
-**
-** These functions may be used by (non-aggregate) SQL functions to
-** associate metadata with argument values. If the same value is passed to
-** multiple invocations of the same SQL function during query execution, under
-** some circumstances the associated metadata may be preserved.  An example
-** of where this might be useful is in a regular-expression matching
-** function. The compiled version of the regular expression can be stored as
-** metadata associated with the pattern string.  
-** Then as long as the pattern string remains the same,
-** the compiled regular expression can be reused on multiple
-** invocations of the same function.
-**
-** ^The sqlite3_get_auxdata(C,N) interface returns a pointer to the metadata
-** associated by the sqlite3_set_auxdata(C,N,P,X) function with the Nth argument
-** value to the application-defined function.  ^N is zero for the left-most
-** function argument.  ^If there is no metadata
-** associated with the function argument, the sqlite3_get_auxdata(C,N) interface
-** returns a NULL pointer.
-**
-** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
-** argument of the application-defined function.  ^Subsequent
-** calls to sqlite3_get_auxdata(C,N) return P from the most recent
-** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
-** NULL if the metadata has been discarded.
-** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
-** SQLite will invoke the destructor function X with parameter P exactly
-** once, when the metadata is discarded.
-** SQLite is free to discard the metadata at any time, including: <ul>
-** <li> ^(when the corresponding function parameter changes)^, or
-** <li> ^(when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
-**      SQL statement)^, or
-** <li> ^(when sqlite3_set_auxdata() is invoked again on the same
-**       parameter)^, or
-** <li> ^(during the original sqlite3_set_auxdata() call when a memory 
-**      allocation error occurs.)^ </ul>
-**
-** Note the last bullet in particular.  The destructor X in 
-** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
-** sqlite3_set_auxdata() interface even returns.  Hence sqlite3_set_auxdata()
-** should be called near the end of the function implementation and the
-** function implementation should not make any use of P after
-** sqlite3_set_auxdata() has been called.
-**
-** ^(In practice, metadata is preserved between function calls for
-** function parameters that are compile-time constants, including literal
-** values and [parameters] and expressions composed from the same.)^
-**
-** The value of the N parameter to these interfaces should be non-negative.
-** Future enhancements may make use of negative N values to define new
-** kinds of function caching behavior.
-**
-** These routines must be called from the same thread in which
-** the SQL function is running.
-*/
-SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
-SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
-
-
-/*
-** CAPI3REF: Constants Defining Special Destructor Behavior
-**
-** These are special values for the destructor that is passed in as the
-** final argument to routines like [sqlite3_result_blob()].  ^If the destructor
-** argument is SQLITE_STATIC, it means that the content pointer is constant
-** and will never change.  It does not need to be destroyed.  ^The
-** SQLITE_TRANSIENT value means that the content will likely change in
-** the near future and that SQLite should make its own private copy of
-** the content before returning.
-**
-** The typedef is necessary to work around problems in certain
-** C++ compilers.
-*/
-typedef void (*sqlite3_destructor_type)(void*);
-#define SQLITE_STATIC      ((sqlite3_destructor_type)0)
-#define SQLITE_TRANSIENT   ((sqlite3_destructor_type)-1)
-
-/*
-** CAPI3REF: Setting The Result Of An SQL Function
-** METHOD: sqlite3_context
-**
-** These routines are used by the xFunc or xFinal callbacks that
-** implement SQL functions and aggregates.  See
-** [sqlite3_create_function()] and [sqlite3_create_function16()]
-** for additional information.
-**
-** These functions work very much like the [parameter binding] family of
-** functions used to bind values to host parameters in prepared statements.
-** Refer to the [SQL parameter] documentation for additional information.
-**
-** ^The sqlite3_result_blob() interface sets the result from
-** an application-defined function to be the BLOB whose content is pointed
-** to by the second parameter and which is N bytes long where N is the
-** third parameter.
-**
-** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N)
-** interfaces set the result of the application-defined function to be
-** a BLOB containing all zero bytes and N bytes in size.
-**
-** ^The sqlite3_result_double() interface sets the result from
-** an application-defined function to be a floating point value specified
-** by its 2nd argument.
-**
-** ^The sqlite3_result_error() and sqlite3_result_error16() functions
-** cause the implemented SQL function to throw an exception.
-** ^SQLite uses the string pointed to by the
-** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
-** as the text of an error message.  ^SQLite interprets the error
-** message string from sqlite3_result_error() as UTF-8. ^SQLite
-** interprets the string from sqlite3_result_error16() as UTF-16 using
-** the same [byte-order determination rules] as [sqlite3_bind_text16()].
-** ^If the third parameter to sqlite3_result_error()
-** or sqlite3_result_error16() is negative then SQLite takes as the error
-** message all text up through the first zero character.
-** ^If the third parameter to sqlite3_result_error() or
-** sqlite3_result_error16() is non-negative then SQLite takes that many
-** bytes (not characters) from the 2nd parameter as the error message.
-** ^The sqlite3_result_error() and sqlite3_result_error16()
-** routines make a private copy of the error message text before
-** they return.  Hence, the calling function can deallocate or
-** modify the text after they return without harm.
-** ^The sqlite3_result_error_code() function changes the error code
-** returned by SQLite as a result of an error in a function.  ^By default,
-** the error code is SQLITE_ERROR.  ^A subsequent call to sqlite3_result_error()
-** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
-**
-** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
-** error indicating that a string or BLOB is too long to represent.
-**
-** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
-** error indicating that a memory allocation failed.
-**
-** ^The sqlite3_result_int() interface sets the return value
-** of the application-defined function to be the 32-bit signed integer
-** value given in the 2nd argument.
-** ^The sqlite3_result_int64() interface sets the return value
-** of the application-defined function to be the 64-bit signed integer
-** value given in the 2nd argument.
-**
-** ^The sqlite3_result_null() interface sets the return value
-** of the application-defined function to be NULL.
-**
-** ^The sqlite3_result_text(), sqlite3_result_text16(),
-** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
-** set the return value of the application-defined function to be
-** a text string which is represented as UTF-8, UTF-16 native byte order,
-** UTF-16 little endian, or UTF-16 big endian, respectively.
-** ^The sqlite3_result_text64() interface sets the return value of an
-** application-defined function to be a text string in an encoding
-** specified by the fifth (and last) parameter, which must be one
-** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
-** ^SQLite takes the text result from the application from
-** the 2nd parameter of the sqlite3_result_text* interfaces.
-** ^If the 3rd parameter to the sqlite3_result_text* interfaces
-** is negative, then SQLite takes result text from the 2nd parameter
-** through the first zero character.
-** ^If the 3rd parameter to the sqlite3_result_text* interfaces
-** is non-negative, then as many bytes (not characters) of the text
-** pointed to by the 2nd parameter are taken as the application-defined
-** function result.  If the 3rd parameter is non-negative, then it
-** must be the byte offset into the string where the NUL terminator would
-** appear if the string where NUL terminated.  If any NUL characters occur
-** in the string at a byte offset that is less than the value of the 3rd
-** parameter, then the resulting string will contain embedded NULs and the
-** result of expressions operating on strings with embedded NULs is undefined.
-** ^If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
-** function as the destructor on the text or BLOB result when it has
-** finished using that result.
-** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
-** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
-** assumes that the text or BLOB result is in constant space and does not
-** copy the content of the parameter nor call a destructor on the content
-** when it has finished using that result.
-** ^If the 4th parameter to the sqlite3_result_text* interfaces
-** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
-** then SQLite makes a copy of the result into space obtained
-** from [sqlite3_malloc()] before it returns.
-**
-** ^For the sqlite3_result_text16(), sqlite3_result_text16le(), and
-** sqlite3_result_text16be() routines, and for sqlite3_result_text64()
-** when the encoding is not UTF8, if the input UTF16 begins with a
-** byte-order mark (BOM, U+FEFF) then the BOM is removed from the
-** string and the rest of the string is interpreted according to the
-** byte-order specified by the BOM.  ^The byte-order specified by
-** the BOM at the beginning of the text overrides the byte-order
-** specified by the interface procedure.  ^So, for example, if
-** sqlite3_result_text16le() is invoked with text that begins
-** with bytes 0xfe, 0xff (a big-endian byte-order mark) then the
-** first two bytes of input are skipped and the remaining input
-** is interpreted as UTF16BE text.
-**
-** ^For UTF16 input text to the sqlite3_result_text16(),
-** sqlite3_result_text16be(), sqlite3_result_text16le(), and
-** sqlite3_result_text64() routines, if the text contains invalid
-** UTF16 characters, the invalid characters might be converted
-** into the unicode replacement character, U+FFFD.
-**
-** ^The sqlite3_result_value() interface sets the result of
-** the application-defined function to be a copy of the
-** [unprotected sqlite3_value] object specified by the 2nd parameter.  ^The
-** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
-** so that the [sqlite3_value] specified in the parameter may change or
-** be deallocated after sqlite3_result_value() returns without harm.
-** ^A [protected sqlite3_value] object may always be used where an
-** [unprotected sqlite3_value] object is required, so either
-** kind of [sqlite3_value] object can be used with this interface.
-**
-** ^The sqlite3_result_pointer(C,P,T,D) interface sets the result to an
-** SQL NULL value, just like [sqlite3_result_null(C)], except that it
-** also associates the host-language pointer P or type T with that 
-** NULL value such that the pointer can be retrieved within an
-** [application-defined SQL function] using [sqlite3_value_pointer()].
-** ^If the D parameter is not NULL, then it is a pointer to a destructor
-** for the P parameter.  ^SQLite invokes D with P as its only argument
-** when SQLite is finished with P.  The T parameter should be a static
-** string and preferably a string literal. The sqlite3_result_pointer()
-** routine is part of the [pointer passing interface] added for SQLite 3.20.0.
-**
-** If these routines are called from within the different thread
-** than the one containing the application-defined function that received
-** the [sqlite3_context] pointer, the results are undefined.
-*/
-SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
-SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,
-                           sqlite3_uint64,void(*)(void*));
-SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
-SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
-SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
-SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
-SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
-SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
-SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
-SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
-SQLITE_API void sqlite3_result_null(sqlite3_context*);
-SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
-SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
-                           void(*)(void*), unsigned char encoding);
-SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
-SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
-SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
-SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
-SQLITE_API void sqlite3_result_pointer(sqlite3_context*, void*,const char*,void(*)(void*));
-SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);
-SQLITE_API int sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n);
-
-
-/*
-** CAPI3REF: Setting The Subtype Of An SQL Function
-** METHOD: sqlite3_context
-**
-** The sqlite3_result_subtype(C,T) function causes the subtype of
-** the result from the [application-defined SQL function] with 
-** [sqlite3_context] C to be the value T.  Only the lower 8 bits 
-** of the subtype T are preserved in current versions of SQLite;
-** higher order bits are discarded.
-** The number of subtype bytes preserved by SQLite might increase
-** in future releases of SQLite.
-*/
-SQLITE_API void sqlite3_result_subtype(sqlite3_context*,unsigned int);
-
-/*
-** CAPI3REF: Define New Collating Sequences
-** METHOD: sqlite3
-**
-** ^These functions add, remove, or modify a [collation] associated
-** with the [database connection] specified as the first argument.
-**
-** ^The name of the collation is a UTF-8 string
-** for sqlite3_create_collation() and sqlite3_create_collation_v2()
-** and a UTF-16 string in native byte order for sqlite3_create_collation16().
-** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
-** considered to be the same name.
-**
-** ^(The third argument (eTextRep) must be one of the constants:
-** <ul>
-** <li> [SQLITE_UTF8],
-** <li> [SQLITE_UTF16LE],
-** <li> [SQLITE_UTF16BE],
-** <li> [SQLITE_UTF16], or
-** <li> [SQLITE_UTF16_ALIGNED].
-** </ul>)^
-** ^The eTextRep argument determines the encoding of strings passed
-** to the collating function callback, xCompare.
-** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
-** force strings to be UTF16 with native byte order.
-** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
-** on an even byte address.
-**
-** ^The fourth argument, pArg, is an application data pointer that is passed
-** through as the first argument to the collating function callback.
-**
-** ^The fifth argument, xCompare, is a pointer to the collating function.
-** ^Multiple collating functions can be registered using the same name but
-** with different eTextRep parameters and SQLite will use whichever
-** function requires the least amount of data transformation.
-** ^If the xCompare argument is NULL then the collating function is
-** deleted.  ^When all collating functions having the same name are deleted,
-** that collation is no longer usable.
-**
-** ^The collating function callback is invoked with a copy of the pArg 
-** application data pointer and with two strings in the encoding specified
-** by the eTextRep argument.  The two integer parameters to the collating
-** function callback are the length of the two strings, in bytes. The collating
-** function must return an integer that is negative, zero, or positive
-** if the first string is less than, equal to, or greater than the second,
-** respectively.  A collating function must always return the same answer
-** given the same inputs.  If two or more collating functions are registered
-** to the same collation name (using different eTextRep values) then all
-** must give an equivalent answer when invoked with equivalent strings.
-** The collating function must obey the following properties for all
-** strings A, B, and C:
-**
-** <ol>
-** <li> If A==B then B==A.
-** <li> If A==B and B==C then A==C.
-** <li> If A&lt;B THEN B&gt;A.
-** <li> If A&lt;B and B&lt;C then A&lt;C.
-** </ol>
-**
-** If a collating function fails any of the above constraints and that
-** collating function is registered and used, then the behavior of SQLite
-** is undefined.
-**
-** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
-** with the addition that the xDestroy callback is invoked on pArg when
-** the collating function is deleted.
-** ^Collating functions are deleted when they are overridden by later
-** calls to the collation creation functions or when the
-** [database connection] is closed using [sqlite3_close()].
-**
-** ^The xDestroy callback is <u>not</u> called if the 
-** sqlite3_create_collation_v2() function fails.  Applications that invoke
-** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should 
-** check the return code and dispose of the application data pointer
-** themselves rather than expecting SQLite to deal with it for them.
-** This is different from every other SQLite interface.  The inconsistency 
-** is unfortunate but cannot be changed without breaking backwards 
-** compatibility.
-**
-** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
-*/
-SQLITE_API int sqlite3_create_collation(
-  sqlite3*, 
-  const char *zName, 
-  int eTextRep, 
-  void *pArg,
-  int(*xCompare)(void*,int,const void*,int,const void*)
-);
-SQLITE_API int sqlite3_create_collation_v2(
-  sqlite3*, 
-  const char *zName, 
-  int eTextRep, 
-  void *pArg,
-  int(*xCompare)(void*,int,const void*,int,const void*),
-  void(*xDestroy)(void*)
-);
-SQLITE_API int sqlite3_create_collation16(
-  sqlite3*, 
-  const void *zName,
-  int eTextRep, 
-  void *pArg,
-  int(*xCompare)(void*,int,const void*,int,const void*)
-);
-
-/*
-** CAPI3REF: Collation Needed Callbacks
-** METHOD: sqlite3
-**
-** ^To avoid having to register all collation sequences before a database
-** can be used, a single callback function may be registered with the
-** [database connection] to be invoked whenever an undefined collation
-** sequence is required.
-**
-** ^If the function is registered using the sqlite3_collation_needed() API,
-** then it is passed the names of undefined collation sequences as strings
-** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
-** the names are passed as UTF-16 in machine native byte order.
-** ^A call to either function replaces the existing collation-needed callback.
-**
-** ^(When the callback is invoked, the first argument passed is a copy
-** of the second argument to sqlite3_collation_needed() or
-** sqlite3_collation_needed16().  The second argument is the database
-** connection.  The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
-** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
-** sequence function required.  The fourth parameter is the name of the
-** required collation sequence.)^
-**
-** The callback function should register the desired collation using
-** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
-** [sqlite3_create_collation_v2()].
-*/
-SQLITE_API int sqlite3_collation_needed(
-  sqlite3*, 
-  void*, 
-  void(*)(void*,sqlite3*,int eTextRep,const char*)
-);
-SQLITE_API int sqlite3_collation_needed16(
-  sqlite3*, 
-  void*,
-  void(*)(void*,sqlite3*,int eTextRep,const void*)
-);
-
-/* BEGIN SQLCIPHER */
-#ifdef SQLITE_HAS_CODEC
-/*
-** Specify the key for an encrypted database.  This routine should be
-** called right after sqlite3_open().
-**
-** The code to implement this API is not available in the public release
-** of SQLite.
-*/
-SQLITE_API int sqlite3_key(
-  sqlite3 *db,                   /* Database to be rekeyed */
-  const void *pKey, int nKey     /* The key */
-);
-SQLITE_API int sqlite3_key_v2(
-  sqlite3 *db,                   /* Database to be rekeyed */
-  const char *zDbName,           /* Name of the database */
-  const void *pKey, int nKey     /* The key */
-);
-
-/*
-** Change the key on an open database.  If the current database is not
-** encrypted, this routine will encrypt it.  If pNew==0 or nNew==0, the
-** database is decrypted.
-**
-** The code to implement this API is not available in the public release
-** of SQLite.
-*/
-SQLITE_API int sqlite3_rekey(
-  sqlite3 *db,                   /* Database to be rekeyed */
-  const void *pKey, int nKey     /* The new key */
-);
-SQLITE_API int sqlite3_rekey_v2(
-  sqlite3 *db,                   /* Database to be rekeyed */
-  const char *zDbName,           /* Name of the database */
-  const void *pKey, int nKey     /* The new key */
-);
-
-/*
-** Specify the activation key for a SEE database.  Unless 
-** activated, none of the SEE routines will work.
-*/
-SQLITE_API void sqlite3_activate_see(
-  const char *zPassPhrase        /* Activation phrase */
-);
-#endif
-/* END SQLCIPHER */
-
-#ifdef SQLITE_ENABLE_CEROD
-/*
-** Specify the activation key for a CEROD database.  Unless 
-** activated, none of the CEROD routines will work.
-*/
-SQLITE_API void sqlite3_activate_cerod(
-  const char *zPassPhrase        /* Activation phrase */
-);
-#endif
-
-/*
-** CAPI3REF: Suspend Execution For A Short Time
-**
-** The sqlite3_sleep() function causes the current thread to suspend execution
-** for at least a number of milliseconds specified in its parameter.
-**
-** If the operating system does not support sleep requests with
-** millisecond time resolution, then the time will be rounded up to
-** the nearest second. The number of milliseconds of sleep actually
-** requested from the operating system is returned.
-**
-** ^SQLite implements this interface by calling the xSleep()
-** method of the default [sqlite3_vfs] object.  If the xSleep() method
-** of the default VFS is not implemented correctly, or not implemented at
-** all, then the behavior of sqlite3_sleep() may deviate from the description
-** in the previous paragraphs.
-*/
-SQLITE_API int sqlite3_sleep(int);
-
-/*
-** CAPI3REF: Name Of The Folder Holding Temporary Files
-**
-** ^(If this global variable is made to point to a string which is
-** the name of a folder (a.k.a. directory), then all temporary files
-** created by SQLite when using a built-in [sqlite3_vfs | VFS]
-** will be placed in that directory.)^  ^If this variable
-** is a NULL pointer, then SQLite performs a search for an appropriate
-** temporary file directory.
-**
-** Applications are strongly discouraged from using this global variable.
-** It is required to set a temporary folder on Windows Runtime (WinRT).
-** But for all other platforms, it is highly recommended that applications
-** neither read nor write this variable.  This global variable is a relic
-** that exists for backwards compatibility of legacy applications and should
-** be avoided in new projects.
-**
-** It is not safe to read or modify this variable in more than one
-** thread at a time.  It is not safe to read or modify this variable
-** if a [database connection] is being used at the same time in a separate
-** thread.
-** It is intended that this variable be set once
-** as part of process initialization and before any SQLite interface
-** routines have been called and that this variable remain unchanged
-** thereafter.
-**
-** ^The [temp_store_directory pragma] may modify this variable and cause
-** it to point to memory obtained from [sqlite3_malloc].  ^Furthermore,
-** the [temp_store_directory pragma] always assumes that any string
-** that this variable points to is held in memory obtained from 
-** [sqlite3_malloc] and the pragma may attempt to free that memory
-** using [sqlite3_free].
-** Hence, if this variable is modified directly, either it should be
-** made NULL or made to point to memory obtained from [sqlite3_malloc]
-** or else the use of the [temp_store_directory pragma] should be avoided.
-** Except when requested by the [temp_store_directory pragma], SQLite
-** does not free the memory that sqlite3_temp_directory points to.  If
-** the application wants that memory to be freed, it must do
-** so itself, taking care to only do so after all [database connection]
-** objects have been destroyed.
-**
-** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
-** prior to calling [sqlite3_open] or [sqlite3_open_v2].  Otherwise, various
-** features that require the use of temporary files may fail.  Here is an
-** example of how to do this using C++ with the Windows Runtime:
-**
-** <blockquote><pre>
-** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
-** &nbsp;     TemporaryFolder->Path->Data();
-** char zPathBuf&#91;MAX_PATH + 1&#93;;
-** memset(zPathBuf, 0, sizeof(zPathBuf));
-** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
-** &nbsp;     NULL, NULL);
-** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
-** </pre></blockquote>
-*/
-SQLITE_API SQLITE_EXTERN char *sqlite3_temp_directory;
-
-/*
-** CAPI3REF: Name Of The Folder Holding Database Files
-**
-** ^(If this global variable is made to point to a string which is
-** the name of a folder (a.k.a. directory), then all database files
-** specified with a relative pathname and created or accessed by
-** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed
-** to be relative to that directory.)^ ^If this variable is a NULL
-** pointer, then SQLite assumes that all database files specified
-** with a relative pathname are relative to the current directory
-** for the process.  Only the windows VFS makes use of this global
-** variable; it is ignored by the unix VFS.
-**
-** Changing the value of this variable while a database connection is
-** open can result in a corrupt database.
-**
-** It is not safe to read or modify this variable in more than one
-** thread at a time.  It is not safe to read or modify this variable
-** if a [database connection] is being used at the same time in a separate
-** thread.
-** It is intended that this variable be set once
-** as part of process initialization and before any SQLite interface
-** routines have been called and that this variable remain unchanged
-** thereafter.
-**
-** ^The [data_store_directory pragma] may modify this variable and cause
-** it to point to memory obtained from [sqlite3_malloc].  ^Furthermore,
-** the [data_store_directory pragma] always assumes that any string
-** that this variable points to is held in memory obtained from 
-** [sqlite3_malloc] and the pragma may attempt to free that memory
-** using [sqlite3_free].
-** Hence, if this variable is modified directly, either it should be
-** made NULL or made to point to memory obtained from [sqlite3_malloc]
-** or else the use of the [data_store_directory pragma] should be avoided.
-*/
-SQLITE_API SQLITE_EXTERN char *sqlite3_data_directory;
-
-/*
-** CAPI3REF: Win32 Specific Interface
-**
-** These interfaces are available only on Windows.  The
-** [sqlite3_win32_set_directory] interface is used to set the value associated
-** with the [sqlite3_temp_directory] or [sqlite3_data_directory] variable, to
-** zValue, depending on the value of the type parameter.  The zValue parameter
-** should be NULL to cause the previous value to be freed via [sqlite3_free];
-** a non-NULL value will be copied into memory obtained from [sqlite3_malloc]
-** prior to being used.  The [sqlite3_win32_set_directory] interface returns
-** [SQLITE_OK] to indicate success, [SQLITE_ERROR] if the type is unsupported,
-** or [SQLITE_NOMEM] if memory could not be allocated.  The value of the
-** [sqlite3_data_directory] variable is intended to act as a replacement for
-** the current directory on the sub-platforms of Win32 where that concept is
-** not present, e.g. WinRT and UWP.  The [sqlite3_win32_set_directory8] and
-** [sqlite3_win32_set_directory16] interfaces behave exactly the same as the
-** sqlite3_win32_set_directory interface except the string parameter must be
-** UTF-8 or UTF-16, respectively.
-*/
-SQLITE_API int sqlite3_win32_set_directory(
-  unsigned long type, /* Identifier for directory being set or reset */
-  void *zValue        /* New value for directory being set or reset */
-);
-SQLITE_API int sqlite3_win32_set_directory8(unsigned long type, const char *zValue);
-SQLITE_API int sqlite3_win32_set_directory16(unsigned long type, const void *zValue);
-
-/*
-** CAPI3REF: Win32 Directory Types
-**
-** These macros are only available on Windows.  They define the allowed values
-** for the type argument to the [sqlite3_win32_set_directory] interface.
-*/
-#define SQLITE_WIN32_DATA_DIRECTORY_TYPE  1
-#define SQLITE_WIN32_TEMP_DIRECTORY_TYPE  2
-
-/*
-** CAPI3REF: Test For Auto-Commit Mode
-** KEYWORDS: {autocommit mode}
-** METHOD: sqlite3
-**
-** ^The sqlite3_get_autocommit() interface returns non-zero or
-** zero if the given database connection is or is not in autocommit mode,
-** respectively.  ^Autocommit mode is on by default.
-** ^Autocommit mode is disabled by a [BEGIN] statement.
-** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
-**
-** If certain kinds of errors occur on a statement within a multi-statement
-** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
-** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
-** transaction might be rolled back automatically.  The only way to
-** find out whether SQLite automatically rolled back the transaction after
-** an error is to use this function.
-**
-** If another thread changes the autocommit status of the database
-** connection while this routine is running, then the return value
-** is undefined.
-*/
-SQLITE_API int sqlite3_get_autocommit(sqlite3*);
-
-/*
-** CAPI3REF: Find The Database Handle Of A Prepared Statement
-** METHOD: sqlite3_stmt
-**
-** ^The sqlite3_db_handle interface returns the [database connection] handle
-** to which a [prepared statement] belongs.  ^The [database connection]
-** returned by sqlite3_db_handle is the same [database connection]
-** that was the first argument
-** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
-** create the statement in the first place.
-*/
-SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Return The Filename For A Database Connection
-** METHOD: sqlite3
-**
-** ^The sqlite3_db_filename(D,N) interface returns a pointer to the filename
-** associated with database N of connection D.
-** ^If there is no attached database N on the database
-** connection D, or if database N is a temporary or in-memory database, then
-** this function will return either a NULL pointer or an empty string.
-**
-** ^The string value returned by this routine is owned and managed by
-** the database connection.  ^The value will be valid until the database N
-** is [DETACH]-ed or until the database connection closes.
-**
-** ^The filename returned by this function is the output of the
-** xFullPathname method of the [VFS].  ^In other words, the filename
-** will be an absolute pathname, even if the filename used
-** to open the database originally was a URI or relative pathname.
-**
-** If the filename pointer returned by this routine is not NULL, then it
-** can be used as the filename input parameter to these routines:
-** <ul>
-** <li> [sqlite3_uri_parameter()]
-** <li> [sqlite3_uri_boolean()]
-** <li> [sqlite3_uri_int64()]
-** <li> [sqlite3_filename_database()]
-** <li> [sqlite3_filename_journal()]
-** <li> [sqlite3_filename_wal()]
-** </ul>
-*/
-SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName);
-
-/*
-** CAPI3REF: Determine if a database is read-only
-** METHOD: sqlite3
-**
-** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
-** of connection D is read-only, 0 if it is read/write, or -1 if N is not
-** the name of a database on connection D.
-*/
-SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);
-
-/*
-** CAPI3REF: Determine the transaction state of a database
-** METHOD: sqlite3
-**
-** ^The sqlite3_txn_state(D,S) interface returns the current
-** [transaction state] of schema S in database connection D.  ^If S is NULL,
-** then the highest transaction state of any schema on database connection D
-** is returned.  Transaction states are (in order of lowest to highest):
-** <ol>
-** <li value="0"> SQLITE_TXN_NONE
-** <li value="1"> SQLITE_TXN_READ
-** <li value="2"> SQLITE_TXN_WRITE
-** </ol>
-** ^If the S argument to sqlite3_txn_state(D,S) is not the name of
-** a valid schema, then -1 is returned.
-*/
-SQLITE_API int sqlite3_txn_state(sqlite3*,const char *zSchema);
-
-/*
-** CAPI3REF: Allowed return values from [sqlite3_txn_state()]
-** KEYWORDS: {transaction state}
-**
-** These constants define the current transaction state of a database file.
-** ^The [sqlite3_txn_state(D,S)] interface returns one of these
-** constants in order to describe the transaction state of schema S
-** in [database connection] D.
-**
-** <dl>
-** [[SQLITE_TXN_NONE]] <dt>SQLITE_TXN_NONE</dt>
-** <dd>The SQLITE_TXN_NONE state means that no transaction is currently
-** pending.</dd>
-**
-** [[SQLITE_TXN_READ]] <dt>SQLITE_TXN_READ</dt>
-** <dd>The SQLITE_TXN_READ state means that the database is currently
-** in a read transaction.  Content has been read from the database file
-** but nothing in the database file has changed.  The transaction state
-** will advanced to SQLITE_TXN_WRITE if any changes occur and there are
-** no other conflicting concurrent write transactions.  The transaction
-** state will revert to SQLITE_TXN_NONE following a [ROLLBACK] or
-** [COMMIT].</dd>
-**
-** [[SQLITE_TXN_WRITE]] <dt>SQLITE_TXN_WRITE</dt>
-** <dd>The SQLITE_TXN_WRITE state means that the database is currently
-** in a write transaction.  Content has been written to the database file
-** but has not yet committed.  The transaction state will change to
-** to SQLITE_TXN_NONE at the next [ROLLBACK] or [COMMIT].</dd>
-*/
-#define SQLITE_TXN_NONE  0
-#define SQLITE_TXN_READ  1
-#define SQLITE_TXN_WRITE 2
-
-/*
-** CAPI3REF: Find the next prepared statement
-** METHOD: sqlite3
-**
-** ^This interface returns a pointer to the next [prepared statement] after
-** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
-** then this interface returns a pointer to the first prepared statement
-** associated with the database connection pDb.  ^If no prepared statement
-** satisfies the conditions of this routine, it returns NULL.
-**
-** The [database connection] pointer D in a call to
-** [sqlite3_next_stmt(D,S)] must refer to an open database
-** connection and in particular must not be a NULL pointer.
-*/
-SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
-
-/*
-** CAPI3REF: Commit And Rollback Notification Callbacks
-** METHOD: sqlite3
-**
-** ^The sqlite3_commit_hook() interface registers a callback
-** function to be invoked whenever a transaction is [COMMIT | committed].
-** ^Any callback set by a previous call to sqlite3_commit_hook()
-** for the same database connection is overridden.
-** ^The sqlite3_rollback_hook() interface registers a callback
-** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
-** ^Any callback set by a previous call to sqlite3_rollback_hook()
-** for the same database connection is overridden.
-** ^The pArg argument is passed through to the callback.
-** ^If the callback on a commit hook function returns non-zero,
-** then the commit is converted into a rollback.
-**
-** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
-** return the P argument from the previous call of the same function
-** on the same [database connection] D, or NULL for
-** the first call for each function on D.
-**
-** The commit and rollback hook callbacks are not reentrant.
-** The callback implementation must not do anything that will modify
-** the database connection that invoked the callback.  Any actions
-** to modify the database connection must be deferred until after the
-** completion of the [sqlite3_step()] call that triggered the commit
-** or rollback hook in the first place.
-** Note that running any other SQL statements, including SELECT statements,
-** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify
-** the database connections for the meaning of "modify" in this paragraph.
-**
-** ^Registering a NULL function disables the callback.
-**
-** ^When the commit hook callback routine returns zero, the [COMMIT]
-** operation is allowed to continue normally.  ^If the commit hook
-** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
-** ^The rollback hook is invoked on a rollback that results from a commit
-** hook returning non-zero, just as it would be with any other rollback.
-**
-** ^For the purposes of this API, a transaction is said to have been
-** rolled back if an explicit "ROLLBACK" statement is executed, or
-** an error or constraint causes an implicit rollback to occur.
-** ^The rollback callback is not invoked if a transaction is
-** automatically rolled back because the database connection is closed.
-**
-** See also the [sqlite3_update_hook()] interface.
-*/
-SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
-SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
-
-/*
-** CAPI3REF: Data Change Notification Callbacks
-** METHOD: sqlite3
-**
-** ^The sqlite3_update_hook() interface registers a callback function
-** with the [database connection] identified by the first argument
-** to be invoked whenever a row is updated, inserted or deleted in
-** a [rowid table].
-** ^Any callback set by a previous call to this function
-** for the same database connection is overridden.
-**
-** ^The second argument is a pointer to the function to invoke when a
-** row is updated, inserted or deleted in a rowid table.
-** ^The first argument to the callback is a copy of the third argument
-** to sqlite3_update_hook().
-** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
-** or [SQLITE_UPDATE], depending on the operation that caused the callback
-** to be invoked.
-** ^The third and fourth arguments to the callback contain pointers to the
-** database and table name containing the affected row.
-** ^The final callback parameter is the [rowid] of the row.
-** ^In the case of an update, this is the [rowid] after the update takes place.
-**
-** ^(The update hook is not invoked when internal system tables are
-** modified (i.e. sqlite_sequence).)^
-** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
-**
-** ^In the current implementation, the update hook
-** is not invoked when conflicting rows are deleted because of an
-** [ON CONFLICT | ON CONFLICT REPLACE] clause.  ^Nor is the update hook
-** invoked when rows are deleted using the [truncate optimization].
-** The exceptions defined in this paragraph might change in a future
-** release of SQLite.
-**
-** The update hook implementation must not do anything that will modify
-** the database connection that invoked the update hook.  Any actions
-** to modify the database connection must be deferred until after the
-** completion of the [sqlite3_step()] call that triggered the update hook.
-** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
-** database connections for the meaning of "modify" in this paragraph.
-**
-** ^The sqlite3_update_hook(D,C,P) function
-** returns the P argument from the previous call
-** on the same [database connection] D, or NULL for
-** the first call on D.
-**
-** See also the [sqlite3_commit_hook()], [sqlite3_rollback_hook()],
-** and [sqlite3_preupdate_hook()] interfaces.
-*/
-SQLITE_API void *sqlite3_update_hook(
-  sqlite3*,
-  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
-  void*
-);
-
-/*
-** CAPI3REF: Enable Or Disable Shared Pager Cache
-**
-** ^(This routine enables or disables the sharing of the database cache
-** and schema data structures between [database connection | connections]
-** to the same database. Sharing is enabled if the argument is true
-** and disabled if the argument is false.)^
-**
-** ^Cache sharing is enabled and disabled for an entire process.
-** This is a change as of SQLite [version 3.5.0] ([dateof:3.5.0]).
-** In prior versions of SQLite,
-** sharing was enabled or disabled for each thread separately.
-**
-** ^(The cache sharing mode set by this interface effects all subsequent
-** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
-** Existing database connections continue to use the sharing mode
-** that was in effect at the time they were opened.)^
-**
-** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
-** successfully.  An [error code] is returned otherwise.)^
-**
-** ^Shared cache is disabled by default. It is recommended that it stay
-** that way.  In other words, do not use this routine.  This interface
-** continues to be provided for historical compatibility, but its use is
-** discouraged.  Any use of shared cache is discouraged.  If shared cache
-** must be used, it is recommended that shared cache only be enabled for
-** individual database connections using the [sqlite3_open_v2()] interface
-** with the [SQLITE_OPEN_SHAREDCACHE] flag.
-**
-** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
-** and will always return SQLITE_MISUSE. On those systems,
-** shared cache mode should be enabled per-database connection via
-** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
-**
-** This interface is threadsafe on processors where writing a
-** 32-bit integer is atomic.
-**
-** See Also:  [SQLite Shared-Cache Mode]
-*/
-SQLITE_API int sqlite3_enable_shared_cache(int);
-
-/*
-** CAPI3REF: Attempt To Free Heap Memory
-**
-** ^The sqlite3_release_memory() interface attempts to free N bytes
-** of heap memory by deallocating non-essential memory allocations
-** held by the database library.   Memory used to cache database
-** pages to improve performance is an example of non-essential memory.
-** ^sqlite3_release_memory() returns the number of bytes actually freed,
-** which might be more or less than the amount requested.
-** ^The sqlite3_release_memory() routine is a no-op returning zero
-** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
-**
-** See also: [sqlite3_db_release_memory()]
-*/
-SQLITE_API int sqlite3_release_memory(int);
-
-/*
-** CAPI3REF: Free Memory Used By A Database Connection
-** METHOD: sqlite3
-**
-** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
-** memory as possible from database connection D. Unlike the
-** [sqlite3_release_memory()] interface, this interface is in effect even
-** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
-** omitted.
-**
-** See also: [sqlite3_release_memory()]
-*/
-SQLITE_API int sqlite3_db_release_memory(sqlite3*);
-
-/*
-** CAPI3REF: Impose A Limit On Heap Size
-**
-** These interfaces impose limits on the amount of heap memory that will be
-** by all database connections within a single process.
-**
-** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
-** soft limit on the amount of heap memory that may be allocated by SQLite.
-** ^SQLite strives to keep heap memory utilization below the soft heap
-** limit by reducing the number of pages held in the page cache
-** as heap memory usages approaches the limit.
-** ^The soft heap limit is "soft" because even though SQLite strives to stay
-** below the limit, it will exceed the limit rather than generate
-** an [SQLITE_NOMEM] error.  In other words, the soft heap limit
-** is advisory only.
-**
-** ^The sqlite3_hard_heap_limit64(N) interface sets a hard upper bound of
-** N bytes on the amount of memory that will be allocated.  ^The
-** sqlite3_hard_heap_limit64(N) interface is similar to
-** sqlite3_soft_heap_limit64(N) except that memory allocations will fail
-** when the hard heap limit is reached.
-**
-** ^The return value from both sqlite3_soft_heap_limit64() and
-** sqlite3_hard_heap_limit64() is the size of
-** the heap limit prior to the call, or negative in the case of an
-** error.  ^If the argument N is negative
-** then no change is made to the heap limit.  Hence, the current
-** size of heap limits can be determined by invoking
-** sqlite3_soft_heap_limit64(-1) or sqlite3_hard_heap_limit(-1).
-**
-** ^Setting the heap limits to zero disables the heap limiter mechanism.
-**
-** ^The soft heap limit may not be greater than the hard heap limit.
-** ^If the hard heap limit is enabled and if sqlite3_soft_heap_limit(N)
-** is invoked with a value of N that is greater than the hard heap limit,
-** the the soft heap limit is set to the value of the hard heap limit.
-** ^The soft heap limit is automatically enabled whenever the hard heap
-** limit is enabled. ^When sqlite3_hard_heap_limit64(N) is invoked and
-** the soft heap limit is outside the range of 1..N, then the soft heap
-** limit is set to N.  ^Invoking sqlite3_soft_heap_limit64(0) when the
-** hard heap limit is enabled makes the soft heap limit equal to the
-** hard heap limit.
-**
-** The memory allocation limits can also be adjusted using
-** [PRAGMA soft_heap_limit] and [PRAGMA hard_heap_limit].
-**
-** ^(The heap limits are not enforced in the current implementation
-** if one or more of following conditions are true:
-**
-** <ul>
-** <li> The limit value is set to zero.
-** <li> Memory accounting is disabled using a combination of the
-**      [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
-**      the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
-** <li> An alternative page cache implementation is specified using
-**      [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...).
-** <li> The page cache allocates from its own memory pool supplied
-**      by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
-**      from the heap.
-** </ul>)^
-**
-** The circumstances under which SQLite will enforce the heap limits may
-** changes in future releases of SQLite.
-*/
-SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);
-SQLITE_API sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 N);
-
-/*
-** CAPI3REF: Deprecated Soft Heap Limit Interface
-** DEPRECATED
-**
-** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
-** interface.  This routine is provided for historical compatibility
-** only.  All new applications should use the
-** [sqlite3_soft_heap_limit64()] interface rather than this one.
-*/
-SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);
-
-
-/*
-** CAPI3REF: Extract Metadata About A Column Of A Table
-** METHOD: sqlite3
-**
-** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
-** information about column C of table T in database D
-** on [database connection] X.)^  ^The sqlite3_table_column_metadata()
-** interface returns SQLITE_OK and fills in the non-NULL pointers in
-** the final five arguments with appropriate values if the specified
-** column exists.  ^The sqlite3_table_column_metadata() interface returns
-** SQLITE_ERROR if the specified column does not exist.
-** ^If the column-name parameter to sqlite3_table_column_metadata() is a
-** NULL pointer, then this routine simply checks for the existence of the
-** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it
-** does not.  If the table name parameter T in a call to
-** sqlite3_table_column_metadata(X,D,T,C,...) is NULL then the result is
-** undefined behavior.
-**
-** ^The column is identified by the second, third and fourth parameters to
-** this function. ^(The second parameter is either the name of the database
-** (i.e. "main", "temp", or an attached database) containing the specified
-** table or NULL.)^ ^If it is NULL, then all attached databases are searched
-** for the table using the same algorithm used by the database engine to
-** resolve unqualified table references.
-**
-** ^The third and fourth parameters to this function are the table and column
-** name of the desired column, respectively.
-**
-** ^Metadata is returned by writing to the memory locations passed as the 5th
-** and subsequent parameters to this function. ^Any of these arguments may be
-** NULL, in which case the corresponding element of metadata is omitted.
-**
-** ^(<blockquote>
-** <table border="1">
-** <tr><th> Parameter <th> Output<br>Type <th>  Description
-**
-** <tr><td> 5th <td> const char* <td> Data type
-** <tr><td> 6th <td> const char* <td> Name of default collation sequence
-** <tr><td> 7th <td> int         <td> True if column has a NOT NULL constraint
-** <tr><td> 8th <td> int         <td> True if column is part of the PRIMARY KEY
-** <tr><td> 9th <td> int         <td> True if column is [AUTOINCREMENT]
-** </table>
-** </blockquote>)^
-**
-** ^The memory pointed to by the character pointers returned for the
-** declaration type and collation sequence is valid until the next
-** call to any SQLite API function.
-**
-** ^If the specified table is actually a view, an [error code] is returned.
-**
-** ^If the specified column is "rowid", "oid" or "_rowid_" and the table
-** is not a [WITHOUT ROWID] table and an
-** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
-** parameters are set for the explicitly declared column. ^(If there is no
-** [INTEGER PRIMARY KEY] column, then the outputs
-** for the [rowid] are set as follows:
-**
-** <pre>
-**     data type: "INTEGER"
-**     collation sequence: "BINARY"
-**     not null: 0
-**     primary key: 1
-**     auto increment: 0
-** </pre>)^
-**
-** ^This function causes all database schemas to be read from disk and
-** parsed, if that has not already been done, and returns an error if
-** any errors are encountered while loading the schema.
-*/
-SQLITE_API int sqlite3_table_column_metadata(
-  sqlite3 *db,                /* Connection handle */
-  const char *zDbName,        /* Database name or NULL */
-  const char *zTableName,     /* Table name */
-  const char *zColumnName,    /* Column name */
-  char const **pzDataType,    /* OUTPUT: Declared data type */
-  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
-  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
-  int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
-  int *pAutoinc               /* OUTPUT: True if column is auto-increment */
-);
-
-/*
-** CAPI3REF: Load An Extension
-** METHOD: sqlite3
-**
-** ^This interface loads an SQLite extension library from the named file.
-**
-** ^The sqlite3_load_extension() interface attempts to load an
-** [SQLite extension] library contained in the file zFile.  If
-** the file cannot be loaded directly, attempts are made to load
-** with various operating-system specific extensions added.
-** So for example, if "samplelib" cannot be loaded, then names like
-** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might
-** be tried also.
-**
-** ^The entry point is zProc.
-** ^(zProc may be 0, in which case SQLite will try to come up with an
-** entry point name on its own.  It first tries "sqlite3_extension_init".
-** If that does not work, it constructs a name "sqlite3_X_init" where the
-** X is consists of the lower-case equivalent of all ASCII alphabetic
-** characters in the filename from the last "/" to the first following
-** "." and omitting any initial "lib".)^
-** ^The sqlite3_load_extension() interface returns
-** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
-** ^If an error occurs and pzErrMsg is not 0, then the
-** [sqlite3_load_extension()] interface shall attempt to
-** fill *pzErrMsg with error message text stored in memory
-** obtained from [sqlite3_malloc()]. The calling function
-** should free this memory by calling [sqlite3_free()].
-**
-** ^Extension loading must be enabled using
-** [sqlite3_enable_load_extension()] or
-** [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],1,NULL)
-** prior to calling this API,
-** otherwise an error will be returned.
-**
-** <b>Security warning:</b> It is recommended that the
-** [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method be used to enable only this
-** interface.  The use of the [sqlite3_enable_load_extension()] interface
-** should be avoided.  This will keep the SQL function [load_extension()]
-** disabled and prevent SQL injections from giving attackers
-** access to extension loading capabilities.
-**
-** See also the [load_extension() SQL function].
-*/
-SQLITE_API int sqlite3_load_extension(
-  sqlite3 *db,          /* Load the extension into this database connection */
-  const char *zFile,    /* Name of the shared library containing extension */
-  const char *zProc,    /* Entry point.  Derived from zFile if 0 */
-  char **pzErrMsg       /* Put error message here if not 0 */
-);
-
-/*
-** CAPI3REF: Enable Or Disable Extension Loading
-** METHOD: sqlite3
-**
-** ^So as not to open security holes in older applications that are
-** unprepared to deal with [extension loading], and as a means of disabling
-** [extension loading] while evaluating user-entered SQL, the following API
-** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
-**
-** ^Extension loading is off by default.
-** ^Call the sqlite3_enable_load_extension() routine with onoff==1
-** to turn extension loading on and call it with onoff==0 to turn
-** it back off again.
-**
-** ^This interface enables or disables both the C-API
-** [sqlite3_load_extension()] and the SQL function [load_extension()].
-** ^(Use [sqlite3_db_config](db,[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION],..)
-** to enable or disable only the C-API.)^
-**
-** <b>Security warning:</b> It is recommended that extension loading
-** be enabled using the [SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION] method
-** rather than this interface, so the [load_extension()] SQL function
-** remains disabled. This will prevent SQL injections from giving attackers
-** access to extension loading capabilities.
-*/
-SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);
-
-/*
-** CAPI3REF: Automatically Load Statically Linked Extensions
-**
-** ^This interface causes the xEntryPoint() function to be invoked for
-** each new [database connection] that is created.  The idea here is that
-** xEntryPoint() is the entry point for a statically linked [SQLite extension]
-** that is to be automatically loaded into all new database connections.
-**
-** ^(Even though the function prototype shows that xEntryPoint() takes
-** no arguments and returns void, SQLite invokes xEntryPoint() with three
-** arguments and expects an integer result as if the signature of the
-** entry point where as follows:
-**
-** <blockquote><pre>
-** &nbsp;  int xEntryPoint(
-** &nbsp;    sqlite3 *db,
-** &nbsp;    const char **pzErrMsg,
-** &nbsp;    const struct sqlite3_api_routines *pThunk
-** &nbsp;  );
-** </pre></blockquote>)^
-**
-** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
-** point to an appropriate error message (obtained from [sqlite3_mprintf()])
-** and return an appropriate [error code].  ^SQLite ensures that *pzErrMsg
-** is NULL before calling the xEntryPoint().  ^SQLite will invoke
-** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns.  ^If any
-** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
-** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
-**
-** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
-** on the list of automatic extensions is a harmless no-op. ^No entry point
-** will be called more than once for each database connection that is opened.
-**
-** See also: [sqlite3_reset_auto_extension()]
-** and [sqlite3_cancel_auto_extension()]
-*/
-SQLITE_API int sqlite3_auto_extension(void(*xEntryPoint)(void));
-
-/*
-** CAPI3REF: Cancel Automatic Extension Loading
-**
-** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
-** initialization routine X that was registered using a prior call to
-** [sqlite3_auto_extension(X)].  ^The [sqlite3_cancel_auto_extension(X)]
-** routine returns 1 if initialization routine X was successfully
-** unregistered and it returns 0 if X was not on the list of initialization
-** routines.
-*/
-SQLITE_API int sqlite3_cancel_auto_extension(void(*xEntryPoint)(void));
-
-/*
-** CAPI3REF: Reset Automatic Extension Loading
-**
-** ^This interface disables all automatic extensions previously
-** registered using [sqlite3_auto_extension()].
-*/
-SQLITE_API void sqlite3_reset_auto_extension(void);
-
-/*
-** The interface to the virtual-table mechanism is currently considered
-** to be experimental.  The interface might change in incompatible ways.
-** If this is a problem for you, do not use the interface at this time.
-**
-** When the virtual-table mechanism stabilizes, we will declare the
-** interface fixed, support it indefinitely, and remove this comment.
-*/
-
-/*
-** Structures used by the virtual table interface
-*/
-typedef struct sqlite3_vtab sqlite3_vtab;
-typedef struct sqlite3_index_info sqlite3_index_info;
-typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
-typedef struct sqlite3_module sqlite3_module;
-
-/*
-** CAPI3REF: Virtual Table Object
-** KEYWORDS: sqlite3_module {virtual table module}
-**
-** This structure, sometimes called a "virtual table module",
-** defines the implementation of a [virtual table].
-** This structure consists mostly of methods for the module.
-**
-** ^A virtual table module is created by filling in a persistent
-** instance of this structure and passing a pointer to that instance
-** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
-** ^The registration remains valid until it is replaced by a different
-** module or until the [database connection] closes.  The content
-** of this structure must not change while it is registered with
-** any database connection.
-*/
-struct sqlite3_module {
-  int iVersion;
-  int (*xCreate)(sqlite3*, void *pAux,
-               int argc, const char *const*argv,
-               sqlite3_vtab **ppVTab, char**);
-  int (*xConnect)(sqlite3*, void *pAux,
-               int argc, const char *const*argv,
-               sqlite3_vtab **ppVTab, char**);
-  int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
-  int (*xDisconnect)(sqlite3_vtab *pVTab);
-  int (*xDestroy)(sqlite3_vtab *pVTab);
-  int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
-  int (*xClose)(sqlite3_vtab_cursor*);
-  int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
-                int argc, sqlite3_value **argv);
-  int (*xNext)(sqlite3_vtab_cursor*);
-  int (*xEof)(sqlite3_vtab_cursor*);
-  int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
-  int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
-  int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
-  int (*xBegin)(sqlite3_vtab *pVTab);
-  int (*xSync)(sqlite3_vtab *pVTab);
-  int (*xCommit)(sqlite3_vtab *pVTab);
-  int (*xRollback)(sqlite3_vtab *pVTab);
-  int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
-                       void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
-                       void **ppArg);
-  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
-  /* The methods above are in version 1 of the sqlite_module object. Those
-  ** below are for version 2 and greater. */
-  int (*xSavepoint)(sqlite3_vtab *pVTab, int);
-  int (*xRelease)(sqlite3_vtab *pVTab, int);
-  int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
-  /* The methods above are in versions 1 and 2 of the sqlite_module object.
-  ** Those below are for version 3 and greater. */
-  int (*xShadowName)(const char*);
-};
-
-/*
-** CAPI3REF: Virtual Table Indexing Information
-** KEYWORDS: sqlite3_index_info
-**
-** The sqlite3_index_info structure and its substructures is used as part
-** of the [virtual table] interface to
-** pass information into and receive the reply from the [xBestIndex]
-** method of a [virtual table module].  The fields under **Inputs** are the
-** inputs to xBestIndex and are read-only.  xBestIndex inserts its
-** results into the **Outputs** fields.
-**
-** ^(The aConstraint[] array records WHERE clause constraints of the form:
-**
-** <blockquote>column OP expr</blockquote>
-**
-** where OP is =, &lt;, &lt;=, &gt;, or &gt;=.)^  ^(The particular operator is
-** stored in aConstraint[].op using one of the
-** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
-** ^(The index of the column is stored in
-** aConstraint[].iColumn.)^  ^(aConstraint[].usable is TRUE if the
-** expr on the right-hand side can be evaluated (and thus the constraint
-** is usable) and false if it cannot.)^
-**
-** ^The optimizer automatically inverts terms of the form "expr OP column"
-** and makes other simplifications to the WHERE clause in an attempt to
-** get as many WHERE clause terms into the form shown above as possible.
-** ^The aConstraint[] array only reports WHERE clause terms that are
-** relevant to the particular virtual table being queried.
-**
-** ^Information about the ORDER BY clause is stored in aOrderBy[].
-** ^Each term of aOrderBy records a column of the ORDER BY clause.
-**
-** The colUsed field indicates which columns of the virtual table may be
-** required by the current scan. Virtual table columns are numbered from
-** zero in the order in which they appear within the CREATE TABLE statement
-** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62),
-** the corresponding bit is set within the colUsed mask if the column may be
-** required by SQLite. If the table has at least 64 columns and any column
-** to the right of the first 63 is required, then bit 63 of colUsed is also
-** set. In other words, column iCol may be required if the expression
-** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to
-** non-zero.
-**
-** The [xBestIndex] method must fill aConstraintUsage[] with information
-** about what parameters to pass to xFilter.  ^If argvIndex>0 then
-** the right-hand side of the corresponding aConstraint[] is evaluated
-** and becomes the argvIndex-th entry in argv.  ^(If aConstraintUsage[].omit
-** is true, then the constraint is assumed to be fully handled by the
-** virtual table and might not be checked again by the byte code.)^ ^(The
-** aConstraintUsage[].omit flag is an optimization hint. When the omit flag
-** is left in its default setting of false, the constraint will always be
-** checked separately in byte code.  If the omit flag is change to true, then
-** the constraint may or may not be checked in byte code.  In other words,
-** when the omit flag is true there is no guarantee that the constraint will
-** not be checked again using byte code.)^
-**
-** ^The idxNum and idxPtr values are recorded and passed into the
-** [xFilter] method.
-** ^[sqlite3_free()] is used to free idxPtr if and only if
-** needToFreeIdxPtr is true.
-**
-** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
-** the correct order to satisfy the ORDER BY clause so that no separate
-** sorting step is required.
-**
-** ^The estimatedCost value is an estimate of the cost of a particular
-** strategy. A cost of N indicates that the cost of the strategy is similar
-** to a linear scan of an SQLite table with N rows. A cost of log(N)
-** indicates that the expense of the operation is similar to that of a
-** binary search on a unique indexed field of an SQLite table with N rows.
-**
-** ^The estimatedRows value is an estimate of the number of rows that
-** will be returned by the strategy.
-**
-** The xBestIndex method may optionally populate the idxFlags field with a
-** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag -
-** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite
-** assumes that the strategy may visit at most one row.
-**
-** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then
-** SQLite also assumes that if a call to the xUpdate() method is made as
-** part of the same statement to delete or update a virtual table row and the
-** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback
-** any database changes. In other words, if the xUpdate() returns
-** SQLITE_CONSTRAINT, the database contents must be exactly as they were
-** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not
-** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by
-** the xUpdate method are automatically rolled back by SQLite.
-**
-** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
-** structure for SQLite [version 3.8.2] ([dateof:3.8.2]).
-** If a virtual table extension is
-** used with an SQLite version earlier than 3.8.2, the results of attempting
-** to read or write the estimatedRows field are undefined (but are likely
-** to include crashing the application). The estimatedRows field should
-** therefore only be used if [sqlite3_libversion_number()] returns a
-** value greater than or equal to 3008002. Similarly, the idxFlags field
-** was added for [version 3.9.0] ([dateof:3.9.0]).
-** It may therefore only be used if
-** sqlite3_libversion_number() returns a value greater than or equal to
-** 3009000.
-*/
-struct sqlite3_index_info {
-  /* Inputs */
-  int nConstraint;           /* Number of entries in aConstraint */
-  struct sqlite3_index_constraint {
-     int iColumn;              /* Column constrained.  -1 for ROWID */
-     unsigned char op;         /* Constraint operator */
-     unsigned char usable;     /* True if this constraint is usable */
-     int iTermOffset;          /* Used internally - xBestIndex should ignore */
-  } *aConstraint;            /* Table of WHERE clause constraints */
-  int nOrderBy;              /* Number of terms in the ORDER BY clause */
-  struct sqlite3_index_orderby {
-     int iColumn;              /* Column number */
-     unsigned char desc;       /* True for DESC.  False for ASC. */
-  } *aOrderBy;               /* The ORDER BY clause */
-  /* Outputs */
-  struct sqlite3_index_constraint_usage {
-    int argvIndex;           /* if >0, constraint is part of argv to xFilter */
-    unsigned char omit;      /* Do not code a test for this constraint */
-  } *aConstraintUsage;
-  int idxNum;                /* Number used to identify the index */
-  char *idxStr;              /* String, possibly obtained from sqlite3_malloc */
-  int needToFreeIdxStr;      /* Free idxStr using sqlite3_free() if true */
-  int orderByConsumed;       /* True if output is already ordered */
-  double estimatedCost;           /* Estimated cost of using this index */
-  /* Fields below are only available in SQLite 3.8.2 and later */
-  sqlite3_int64 estimatedRows;    /* Estimated number of rows returned */
-  /* Fields below are only available in SQLite 3.9.0 and later */
-  int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */
-  /* Fields below are only available in SQLite 3.10.0 and later */
-  sqlite3_uint64 colUsed;    /* Input: Mask of columns used by statement */
-};
-
-/*
-** CAPI3REF: Virtual Table Scan Flags
-**
-** Virtual table implementations are allowed to set the
-** [sqlite3_index_info].idxFlags field to some combination of
-** these bits.
-*/
-#define SQLITE_INDEX_SCAN_UNIQUE      1     /* Scan visits at most 1 row */
-
-/*
-** CAPI3REF: Virtual Table Constraint Operator Codes
-**
-** These macros define the allowed values for the
-** [sqlite3_index_info].aConstraint[].op field.  Each value represents
-** an operator that is part of a constraint term in the wHERE clause of
-** a query that uses a [virtual table].
-*/
-#define SQLITE_INDEX_CONSTRAINT_EQ         2
-#define SQLITE_INDEX_CONSTRAINT_GT         4
-#define SQLITE_INDEX_CONSTRAINT_LE         8
-#define SQLITE_INDEX_CONSTRAINT_LT        16
-#define SQLITE_INDEX_CONSTRAINT_GE        32
-#define SQLITE_INDEX_CONSTRAINT_MATCH     64
-#define SQLITE_INDEX_CONSTRAINT_LIKE      65
-#define SQLITE_INDEX_CONSTRAINT_GLOB      66
-#define SQLITE_INDEX_CONSTRAINT_REGEXP    67
-#define SQLITE_INDEX_CONSTRAINT_NE        68
-#define SQLITE_INDEX_CONSTRAINT_ISNOT     69
-#define SQLITE_INDEX_CONSTRAINT_ISNOTNULL 70
-#define SQLITE_INDEX_CONSTRAINT_ISNULL    71
-#define SQLITE_INDEX_CONSTRAINT_IS        72
-#define SQLITE_INDEX_CONSTRAINT_FUNCTION 150
-
-/*
-** CAPI3REF: Register A Virtual Table Implementation
-** METHOD: sqlite3
-**
-** ^These routines are used to register a new [virtual table module] name.
-** ^Module names must be registered before
-** creating a new [virtual table] using the module and before using a
-** preexisting [virtual table] for the module.
-**
-** ^The module name is registered on the [database connection] specified
-** by the first parameter.  ^The name of the module is given by the
-** second parameter.  ^The third parameter is a pointer to
-** the implementation of the [virtual table module].   ^The fourth
-** parameter is an arbitrary client data pointer that is passed through
-** into the [xCreate] and [xConnect] methods of the virtual table module
-** when a new virtual table is be being created or reinitialized.
-**
-** ^The sqlite3_create_module_v2() interface has a fifth parameter which
-** is a pointer to a destructor for the pClientData.  ^SQLite will
-** invoke the destructor function (if it is not NULL) when SQLite
-** no longer needs the pClientData pointer.  ^The destructor will also
-** be invoked if the call to sqlite3_create_module_v2() fails.
-** ^The sqlite3_create_module()
-** interface is equivalent to sqlite3_create_module_v2() with a NULL
-** destructor.
-**
-** ^If the third parameter (the pointer to the sqlite3_module object) is
-** NULL then no new module is create and any existing modules with the
-** same name are dropped.
-**
-** See also: [sqlite3_drop_modules()]
-*/
-SQLITE_API int sqlite3_create_module(
-  sqlite3 *db,               /* SQLite connection to register module with */
-  const char *zName,         /* Name of the module */
-  const sqlite3_module *p,   /* Methods for the module */
-  void *pClientData          /* Client data for xCreate/xConnect */
-);
-SQLITE_API int sqlite3_create_module_v2(
-  sqlite3 *db,               /* SQLite connection to register module with */
-  const char *zName,         /* Name of the module */
-  const sqlite3_module *p,   /* Methods for the module */
-  void *pClientData,         /* Client data for xCreate/xConnect */
-  void(*xDestroy)(void*)     /* Module destructor function */
-);
-
-/*
-** CAPI3REF: Remove Unnecessary Virtual Table Implementations
-** METHOD: sqlite3
-**
-** ^The sqlite3_drop_modules(D,L) interface removes all virtual
-** table modules from database connection D except those named on list L.
-** The L parameter must be either NULL or a pointer to an array of pointers
-** to strings where the array is terminated by a single NULL pointer.
-** ^If the L parameter is NULL, then all virtual table modules are removed.
-**
-** See also: [sqlite3_create_module()]
-*/
-SQLITE_API int sqlite3_drop_modules(
-  sqlite3 *db,                /* Remove modules from this connection */
-  const char **azKeep         /* Except, do not remove the ones named here */
-);
-
-/*
-** CAPI3REF: Virtual Table Instance Object
-** KEYWORDS: sqlite3_vtab
-**
-** Every [virtual table module] implementation uses a subclass
-** of this object to describe a particular instance
-** of the [virtual table].  Each subclass will
-** be tailored to the specific needs of the module implementation.
-** The purpose of this superclass is to define certain fields that are
-** common to all module implementations.
-**
-** ^Virtual tables methods can set an error message by assigning a
-** string obtained from [sqlite3_mprintf()] to zErrMsg.  The method should
-** take care that any prior string is freed by a call to [sqlite3_free()]
-** prior to assigning a new string to zErrMsg.  ^After the error message
-** is delivered up to the client application, the string will be automatically
-** freed by sqlite3_free() and the zErrMsg field will be zeroed.
-*/
-struct sqlite3_vtab {
-  const sqlite3_module *pModule;  /* The module for this virtual table */
-  int nRef;                       /* Number of open cursors */
-  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
-  /* Virtual table implementations will typically add additional fields */
-};
-
-/*
-** CAPI3REF: Virtual Table Cursor Object
-** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
-**
-** Every [virtual table module] implementation uses a subclass of the
-** following structure to describe cursors that point into the
-** [virtual table] and are used
-** to loop through the virtual table.  Cursors are created using the
-** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
-** by the [sqlite3_module.xClose | xClose] method.  Cursors are used
-** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
-** of the module.  Each module implementation will define
-** the content of a cursor structure to suit its own needs.
-**
-** This superclass exists in order to define fields of the cursor that
-** are common to all implementations.
-*/
-struct sqlite3_vtab_cursor {
-  sqlite3_vtab *pVtab;      /* Virtual table of this cursor */
-  /* Virtual table implementations will typically add additional fields */
-};
-
-/*
-** CAPI3REF: Declare The Schema Of A Virtual Table
-**
-** ^The [xCreate] and [xConnect] methods of a
-** [virtual table module] call this interface
-** to declare the format (the names and datatypes of the columns) of
-** the virtual tables they implement.
-*/
-SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);
-
-/*
-** CAPI3REF: Overload A Function For A Virtual Table
-** METHOD: sqlite3
-**
-** ^(Virtual tables can provide alternative implementations of functions
-** using the [xFindFunction] method of the [virtual table module].
-** But global versions of those functions
-** must exist in order to be overloaded.)^
-**
-** ^(This API makes sure a global version of a function with a particular
-** name and number of parameters exists.  If no such function exists
-** before this API is called, a new function is created.)^  ^The implementation
-** of the new function always causes an exception to be thrown.  So
-** the new function is not good for anything by itself.  Its only
-** purpose is to be a placeholder function that can be overloaded
-** by a [virtual table].
-*/
-SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
-
-/*
-** The interface to the virtual-table mechanism defined above (back up
-** to a comment remarkably similar to this one) is currently considered
-** to be experimental.  The interface might change in incompatible ways.
-** If this is a problem for you, do not use the interface at this time.
-**
-** When the virtual-table mechanism stabilizes, we will declare the
-** interface fixed, support it indefinitely, and remove this comment.
-*/
-
-/*
-** CAPI3REF: A Handle To An Open BLOB
-** KEYWORDS: {BLOB handle} {BLOB handles}
-**
-** An instance of this object represents an open BLOB on which
-** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
-** ^Objects of this type are created by [sqlite3_blob_open()]
-** and destroyed by [sqlite3_blob_close()].
-** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
-** can be used to read or write small subsections of the BLOB.
-** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
-*/
-typedef struct sqlite3_blob sqlite3_blob;
-
-/*
-** CAPI3REF: Open A BLOB For Incremental I/O
-** METHOD: sqlite3
-** CONSTRUCTOR: sqlite3_blob
-**
-** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
-** in row iRow, column zColumn, table zTable in database zDb;
-** in other words, the same BLOB that would be selected by:
-**
-** <pre>
-**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
-** </pre>)^
-**
-** ^(Parameter zDb is not the filename that contains the database, but
-** rather the symbolic name of the database. For attached databases, this is
-** the name that appears after the AS keyword in the [ATTACH] statement.
-** For the main database file, the database name is "main". For TEMP
-** tables, the database name is "temp".)^
-**
-** ^If the flags parameter is non-zero, then the BLOB is opened for read
-** and write access. ^If the flags parameter is zero, the BLOB is opened for
-** read-only access.
-**
-** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
-** in *ppBlob. Otherwise an [error code] is returned and, unless the error
-** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
-** the API is not misused, it is always safe to call [sqlite3_blob_close()]
-** on *ppBlob after this function it returns.
-**
-** This function fails with SQLITE_ERROR if any of the following are true:
-** <ul>
-**   <li> ^(Database zDb does not exist)^,
-**   <li> ^(Table zTable does not exist within database zDb)^,
-**   <li> ^(Table zTable is a WITHOUT ROWID table)^,
-**   <li> ^(Column zColumn does not exist)^,
-**   <li> ^(Row iRow is not present in the table)^,
-**   <li> ^(The specified column of row iRow contains a value that is not
-**         a TEXT or BLOB value)^,
-**   <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE
-**         constraint and the blob is being opened for read/write access)^,
-**   <li> ^([foreign key constraints | Foreign key constraints] are enabled,
-**         column zColumn is part of a [child key] definition and the blob is
-**         being opened for read/write access)^.
-** </ul>
-**
-** ^Unless it returns SQLITE_MISUSE, this function sets the
-** [database connection] error code and message accessible via
-** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
-**
-** A BLOB referenced by sqlite3_blob_open() may be read using the
-** [sqlite3_blob_read()] interface and modified by using
-** [sqlite3_blob_write()].  The [BLOB handle] can be moved to a
-** different row of the same table using the [sqlite3_blob_reopen()]
-** interface.  However, the column, table, or database of a [BLOB handle]
-** cannot be changed after the [BLOB handle] is opened.
-**
-** ^(If the row that a BLOB handle points to is modified by an
-** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
-** then the BLOB handle is marked as "expired".
-** This is true if any column of the row is changed, even a column
-** other than the one the BLOB handle is open on.)^
-** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
-** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
-** ^(Changes written into a BLOB prior to the BLOB expiring are not
-** rolled back by the expiration of the BLOB.  Such changes will eventually
-** commit if the transaction continues to completion.)^
-**
-** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
-** the opened blob.  ^The size of a blob may not be changed by this
-** interface.  Use the [UPDATE] SQL command to change the size of a
-** blob.
-**
-** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
-** and the built-in [zeroblob] SQL function may be used to create a
-** zero-filled blob to read or write using the incremental-blob interface.
-**
-** To avoid a resource leak, every open [BLOB handle] should eventually
-** be released by a call to [sqlite3_blob_close()].
-**
-** See also: [sqlite3_blob_close()],
-** [sqlite3_blob_reopen()], [sqlite3_blob_read()],
-** [sqlite3_blob_bytes()], [sqlite3_blob_write()].
-*/
-SQLITE_API int sqlite3_blob_open(
-  sqlite3*,
-  const char *zDb,
-  const char *zTable,
-  const char *zColumn,
-  sqlite3_int64 iRow,
-  int flags,
-  sqlite3_blob **ppBlob
-);
-
-/*
-** CAPI3REF: Move a BLOB Handle to a New Row
-** METHOD: sqlite3_blob
-**
-** ^This function is used to move an existing [BLOB handle] so that it points
-** to a different row of the same database table. ^The new row is identified
-** by the rowid value passed as the second argument. Only the row can be
-** changed. ^The database, table and column on which the blob handle is open
-** remain the same. Moving an existing [BLOB handle] to a new row is
-** faster than closing the existing handle and opening a new one.
-**
-** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
-** it must exist and there must be either a blob or text value stored in
-** the nominated column.)^ ^If the new row is not present in the table, or if
-** it does not contain a blob or text value, or if another error occurs, an
-** SQLite error code is returned and the blob handle is considered aborted.
-** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
-** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
-** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
-** always returns zero.
-**
-** ^This function sets the database handle error code and message.
-*/
-SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);
-
-/*
-** CAPI3REF: Close A BLOB Handle
-** DESTRUCTOR: sqlite3_blob
-**
-** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
-** unconditionally.  Even if this routine returns an error code, the
-** handle is still closed.)^
-**
-** ^If the blob handle being closed was opened for read-write access, and if
-** the database is in auto-commit mode and there are no other open read-write
-** blob handles or active write statements, the current transaction is
-** committed. ^If an error occurs while committing the transaction, an error
-** code is returned and the transaction rolled back.
-**
-** Calling this function with an argument that is not a NULL pointer or an
-** open blob handle results in undefined behaviour. ^Calling this routine
-** with a null pointer (such as would be returned by a failed call to
-** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
-** is passed a valid open blob handle, the values returned by the
-** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
-*/
-SQLITE_API int sqlite3_blob_close(sqlite3_blob *);
-
-/*
-** CAPI3REF: Return The Size Of An Open BLOB
-** METHOD: sqlite3_blob
-**
-** ^Returns the size in bytes of the BLOB accessible via the
-** successfully opened [BLOB handle] in its only argument.  ^The
-** incremental blob I/O routines can only read or overwriting existing
-** blob content; they cannot change the size of a blob.
-**
-** This routine only works on a [BLOB handle] which has been created
-** by a prior successful call to [sqlite3_blob_open()] and which has not
-** been closed by [sqlite3_blob_close()].  Passing any other pointer in
-** to this routine results in undefined and probably undesirable behavior.
-*/
-SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);
-
-/*
-** CAPI3REF: Read Data From A BLOB Incrementally
-** METHOD: sqlite3_blob
-**
-** ^(This function is used to read data from an open [BLOB handle] into a
-** caller-supplied buffer. N bytes of data are copied into buffer Z
-** from the open BLOB, starting at offset iOffset.)^
-**
-** ^If offset iOffset is less than N bytes from the end of the BLOB,
-** [SQLITE_ERROR] is returned and no data is read.  ^If N or iOffset is
-** less than zero, [SQLITE_ERROR] is returned and no data is read.
-** ^The size of the blob (and hence the maximum value of N+iOffset)
-** can be determined using the [sqlite3_blob_bytes()] interface.
-**
-** ^An attempt to read from an expired [BLOB handle] fails with an
-** error code of [SQLITE_ABORT].
-**
-** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
-** Otherwise, an [error code] or an [extended error code] is returned.)^
-**
-** This routine only works on a [BLOB handle] which has been created
-** by a prior successful call to [sqlite3_blob_open()] and which has not
-** been closed by [sqlite3_blob_close()].  Passing any other pointer in
-** to this routine results in undefined and probably undesirable behavior.
-**
-** See also: [sqlite3_blob_write()].
-*/
-SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
-
-/*
-** CAPI3REF: Write Data Into A BLOB Incrementally
-** METHOD: sqlite3_blob
-**
-** ^(This function is used to write data into an open [BLOB handle] from a
-** caller-supplied buffer. N bytes of data are copied from the buffer Z
-** into the open BLOB, starting at offset iOffset.)^
-**
-** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
-** Otherwise, an  [error code] or an [extended error code] is returned.)^
-** ^Unless SQLITE_MISUSE is returned, this function sets the
-** [database connection] error code and message accessible via
-** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
-**
-** ^If the [BLOB handle] passed as the first argument was not opened for
-** writing (the flags parameter to [sqlite3_blob_open()] was zero),
-** this function returns [SQLITE_READONLY].
-**
-** This function may only modify the contents of the BLOB; it is
-** not possible to increase the size of a BLOB using this API.
-** ^If offset iOffset is less than N bytes from the end of the BLOB,
-** [SQLITE_ERROR] is returned and no data is written. The size of the
-** BLOB (and hence the maximum value of N+iOffset) can be determined
-** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less
-** than zero [SQLITE_ERROR] is returned and no data is written.
-**
-** ^An attempt to write to an expired [BLOB handle] fails with an
-** error code of [SQLITE_ABORT].  ^Writes to the BLOB that occurred
-** before the [BLOB handle] expired are not rolled back by the
-** expiration of the handle, though of course those changes might
-** have been overwritten by the statement that expired the BLOB handle
-** or by other independent statements.
-**
-** This routine only works on a [BLOB handle] which has been created
-** by a prior successful call to [sqlite3_blob_open()] and which has not
-** been closed by [sqlite3_blob_close()].  Passing any other pointer in
-** to this routine results in undefined and probably undesirable behavior.
-**
-** See also: [sqlite3_blob_read()].
-*/
-SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
-
-/*
-** CAPI3REF: Virtual File System Objects
-**
-** A virtual filesystem (VFS) is an [sqlite3_vfs] object
-** that SQLite uses to interact
-** with the underlying operating system.  Most SQLite builds come with a
-** single default VFS that is appropriate for the host computer.
-** New VFSes can be registered and existing VFSes can be unregistered.
-** The following interfaces are provided.
-**
-** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
-** ^Names are case sensitive.
-** ^Names are zero-terminated UTF-8 strings.
-** ^If there is no match, a NULL pointer is returned.
-** ^If zVfsName is NULL then the default VFS is returned.
-**
-** ^New VFSes are registered with sqlite3_vfs_register().
-** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
-** ^The same VFS can be registered multiple times without injury.
-** ^To make an existing VFS into the default VFS, register it again
-** with the makeDflt flag set.  If two different VFSes with the
-** same name are registered, the behavior is undefined.  If a
-** VFS is registered with a name that is NULL or an empty string,
-** then the behavior is undefined.
-**
-** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
-** ^(If the default VFS is unregistered, another VFS is chosen as
-** the default.  The choice for the new VFS is arbitrary.)^
-*/
-SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
-SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
-SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);
-
-/*
-** CAPI3REF: Mutexes
-**
-** The SQLite core uses these routines for thread
-** synchronization. Though they are intended for internal
-** use by SQLite, code that links against SQLite is
-** permitted to use any of these routines.
-**
-** The SQLite source code contains multiple implementations
-** of these mutex routines.  An appropriate implementation
-** is selected automatically at compile-time.  The following
-** implementations are available in the SQLite core:
-**
-** <ul>
-** <li>   SQLITE_MUTEX_PTHREADS
-** <li>   SQLITE_MUTEX_W32
-** <li>   SQLITE_MUTEX_NOOP
-** </ul>
-**
-** The SQLITE_MUTEX_NOOP implementation is a set of routines
-** that does no real locking and is appropriate for use in
-** a single-threaded application.  The SQLITE_MUTEX_PTHREADS and
-** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
-** and Windows.
-**
-** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
-** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
-** implementation is included with the library. In this case the
-** application must supply a custom mutex implementation using the
-** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
-** before calling sqlite3_initialize() or any other public sqlite3_
-** function that calls sqlite3_initialize().
-**
-** ^The sqlite3_mutex_alloc() routine allocates a new
-** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
-** routine returns NULL if it is unable to allocate the requested
-** mutex.  The argument to sqlite3_mutex_alloc() must one of these
-** integer constants:
-**
-** <ul>
-** <li>  SQLITE_MUTEX_FAST
-** <li>  SQLITE_MUTEX_RECURSIVE
-** <li>  SQLITE_MUTEX_STATIC_MAIN
-** <li>  SQLITE_MUTEX_STATIC_MEM
-** <li>  SQLITE_MUTEX_STATIC_OPEN
-** <li>  SQLITE_MUTEX_STATIC_PRNG
-** <li>  SQLITE_MUTEX_STATIC_LRU
-** <li>  SQLITE_MUTEX_STATIC_PMEM
-** <li>  SQLITE_MUTEX_STATIC_APP1
-** <li>  SQLITE_MUTEX_STATIC_APP2
-** <li>  SQLITE_MUTEX_STATIC_APP3
-** <li>  SQLITE_MUTEX_STATIC_VFS1
-** <li>  SQLITE_MUTEX_STATIC_VFS2
-** <li>  SQLITE_MUTEX_STATIC_VFS3
-** </ul>
-**
-** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
-** cause sqlite3_mutex_alloc() to create
-** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
-** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
-** The mutex implementation does not need to make a distinction
-** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
-** not want to.  SQLite will only request a recursive mutex in
-** cases where it really needs one.  If a faster non-recursive mutex
-** implementation is available on the host platform, the mutex subsystem
-** might return such a mutex in response to SQLITE_MUTEX_FAST.
-**
-** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
-** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
-** a pointer to a static preexisting mutex.  ^Nine static mutexes are
-** used by the current version of SQLite.  Future versions of SQLite
-** may add additional static mutexes.  Static mutexes are for internal
-** use by SQLite only.  Applications that use SQLite mutexes should
-** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
-** SQLITE_MUTEX_RECURSIVE.
-**
-** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
-** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
-** returns a different mutex on every call.  ^For the static
-** mutex types, the same mutex is returned on every call that has
-** the same type number.
-**
-** ^The sqlite3_mutex_free() routine deallocates a previously
-** allocated dynamic mutex.  Attempting to deallocate a static
-** mutex results in undefined behavior.
-**
-** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
-** to enter a mutex.  ^If another thread is already within the mutex,
-** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
-** SQLITE_BUSY.  ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
-** upon successful entry.  ^(Mutexes created using
-** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
-** In such cases, the
-** mutex must be exited an equal number of times before another thread
-** can enter.)^  If the same thread tries to enter any mutex other
-** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.
-**
-** ^(Some systems (for example, Windows 95) do not support the operation
-** implemented by sqlite3_mutex_try().  On those systems, sqlite3_mutex_try()
-** will always return SQLITE_BUSY. The SQLite core only ever uses
-** sqlite3_mutex_try() as an optimization so this is acceptable
-** behavior.)^
-**
-** ^The sqlite3_mutex_leave() routine exits a mutex that was
-** previously entered by the same thread.   The behavior
-** is undefined if the mutex is not currently entered by the
-** calling thread or is not currently allocated.
-**
-** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
-** sqlite3_mutex_leave() is a NULL pointer, then all three routines
-** behave as no-ops.
-**
-** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
-*/
-SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
-SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
-SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
-SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
-SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);
-
-/*
-** CAPI3REF: Mutex Methods Object
-**
-** An instance of this structure defines the low-level routines
-** used to allocate and use mutexes.
-**
-** Usually, the default mutex implementations provided by SQLite are
-** sufficient, however the application has the option of substituting a custom
-** implementation for specialized deployments or systems for which SQLite
-** does not provide a suitable implementation. In this case, the application
-** creates and populates an instance of this structure to pass
-** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
-** Additionally, an instance of this structure can be used as an
-** output variable when querying the system for the current mutex
-** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
-**
-** ^The xMutexInit method defined by this structure is invoked as
-** part of system initialization by the sqlite3_initialize() function.
-** ^The xMutexInit routine is called by SQLite exactly once for each
-** effective call to [sqlite3_initialize()].
-**
-** ^The xMutexEnd method defined by this structure is invoked as
-** part of system shutdown by the sqlite3_shutdown() function. The
-** implementation of this method is expected to release all outstanding
-** resources obtained by the mutex methods implementation, especially
-** those obtained by the xMutexInit method.  ^The xMutexEnd()
-** interface is invoked exactly once for each call to [sqlite3_shutdown()].
-**
-** ^(The remaining seven methods defined by this structure (xMutexAlloc,
-** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
-** xMutexNotheld) implement the following interfaces (respectively):
-**
-** <ul>
-**   <li>  [sqlite3_mutex_alloc()] </li>
-**   <li>  [sqlite3_mutex_free()] </li>
-**   <li>  [sqlite3_mutex_enter()] </li>
-**   <li>  [sqlite3_mutex_try()] </li>
-**   <li>  [sqlite3_mutex_leave()] </li>
-**   <li>  [sqlite3_mutex_held()] </li>
-**   <li>  [sqlite3_mutex_notheld()] </li>
-** </ul>)^
-**
-** The only difference is that the public sqlite3_XXX functions enumerated
-** above silently ignore any invocations that pass a NULL pointer instead
-** of a valid mutex handle. The implementations of the methods defined
-** by this structure are not required to handle this case. The results
-** of passing a NULL pointer instead of a valid mutex handle are undefined
-** (i.e. it is acceptable to provide an implementation that segfaults if
-** it is passed a NULL pointer).
-**
-** The xMutexInit() method must be threadsafe.  It must be harmless to
-** invoke xMutexInit() multiple times within the same process and without
-** intervening calls to xMutexEnd().  Second and subsequent calls to
-** xMutexInit() must be no-ops.
-**
-** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
-** and its associates).  Similarly, xMutexAlloc() must not use SQLite memory
-** allocation for a static mutex.  ^However xMutexAlloc() may use SQLite
-** memory allocation for a fast or recursive mutex.
-**
-** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
-** called, but only if the prior call to xMutexInit returned SQLITE_OK.
-** If xMutexInit fails in any way, it is expected to clean up after itself
-** prior to returning.
-*/
-typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
-struct sqlite3_mutex_methods {
-  int (*xMutexInit)(void);
-  int (*xMutexEnd)(void);
-  sqlite3_mutex *(*xMutexAlloc)(int);
-  void (*xMutexFree)(sqlite3_mutex *);
-  void (*xMutexEnter)(sqlite3_mutex *);
-  int (*xMutexTry)(sqlite3_mutex *);
-  void (*xMutexLeave)(sqlite3_mutex *);
-  int (*xMutexHeld)(sqlite3_mutex *);
-  int (*xMutexNotheld)(sqlite3_mutex *);
-};
-
-/*
-** CAPI3REF: Mutex Verification Routines
-**
-** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
-** are intended for use inside assert() statements.  The SQLite core
-** never uses these routines except inside an assert() and applications
-** are advised to follow the lead of the core.  The SQLite core only
-** provides implementations for these routines when it is compiled
-** with the SQLITE_DEBUG flag.  External mutex implementations
-** are only required to provide these routines if SQLITE_DEBUG is
-** defined and if NDEBUG is not defined.
-**
-** These routines should return true if the mutex in their argument
-** is held or not held, respectively, by the calling thread.
-**
-** The implementation is not required to provide versions of these
-** routines that actually work. If the implementation does not provide working
-** versions of these routines, it should at least provide stubs that always
-** return true so that one does not get spurious assertion failures.
-**
-** If the argument to sqlite3_mutex_held() is a NULL pointer then
-** the routine should return 1.   This seems counter-intuitive since
-** clearly the mutex cannot be held if it does not exist.  But
-** the reason the mutex does not exist is because the build is not
-** using mutexes.  And we do not want the assert() containing the
-** call to sqlite3_mutex_held() to fail, so a non-zero return is
-** the appropriate thing to do.  The sqlite3_mutex_notheld()
-** interface should also return 1 when given a NULL pointer.
-*/
-#ifndef NDEBUG
-SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
-SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
-#endif
-
-/*
-** CAPI3REF: Mutex Types
-**
-** The [sqlite3_mutex_alloc()] interface takes a single argument
-** which is one of these integer constants.
-**
-** The set of static mutexes may change from one SQLite release to the
-** next.  Applications that override the built-in mutex logic must be
-** prepared to accommodate additional static mutexes.
-*/
-#define SQLITE_MUTEX_FAST             0
-#define SQLITE_MUTEX_RECURSIVE        1
-#define SQLITE_MUTEX_STATIC_MAIN      2
-#define SQLITE_MUTEX_STATIC_MEM       3  /* sqlite3_malloc() */
-#define SQLITE_MUTEX_STATIC_MEM2      4  /* NOT USED */
-#define SQLITE_MUTEX_STATIC_OPEN      4  /* sqlite3BtreeOpen() */
-#define SQLITE_MUTEX_STATIC_PRNG      5  /* sqlite3_randomness() */
-#define SQLITE_MUTEX_STATIC_LRU       6  /* lru page list */
-#define SQLITE_MUTEX_STATIC_LRU2      7  /* NOT USED */
-#define SQLITE_MUTEX_STATIC_PMEM      7  /* sqlite3PageMalloc() */
-#define SQLITE_MUTEX_STATIC_APP1      8  /* For use by application */
-#define SQLITE_MUTEX_STATIC_APP2      9  /* For use by application */
-#define SQLITE_MUTEX_STATIC_APP3     10  /* For use by application */
-#define SQLITE_MUTEX_STATIC_VFS1     11  /* For use by built-in VFS */
-#define SQLITE_MUTEX_STATIC_VFS2     12  /* For use by extension VFS */
-#define SQLITE_MUTEX_STATIC_VFS3     13  /* For use by application VFS */
-
-/* Legacy compatibility: */
-#define SQLITE_MUTEX_STATIC_MASTER    2
-
-
-/*
-** CAPI3REF: Retrieve the mutex for a database connection
-** METHOD: sqlite3
-**
-** ^This interface returns a pointer the [sqlite3_mutex] object that
-** serializes access to the [database connection] given in the argument
-** when the [threading mode] is Serialized.
-** ^If the [threading mode] is Single-thread or Multi-thread then this
-** routine returns a NULL pointer.
-*/
-SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);
-
-/*
-** CAPI3REF: Low-Level Control Of Database Files
-** METHOD: sqlite3
-** KEYWORDS: {file control}
-**
-** ^The [sqlite3_file_control()] interface makes a direct call to the
-** xFileControl method for the [sqlite3_io_methods] object associated
-** with a particular database identified by the second argument. ^The
-** name of the database is "main" for the main database or "temp" for the
-** TEMP database, or the name that appears after the AS keyword for
-** databases that are added using the [ATTACH] SQL command.
-** ^A NULL pointer can be used in place of "main" to refer to the
-** main database file.
-** ^The third and fourth parameters to this routine
-** are passed directly through to the second and third parameters of
-** the xFileControl method.  ^The return value of the xFileControl
-** method becomes the return value of this routine.
-**
-** A few opcodes for [sqlite3_file_control()] are handled directly
-** by the SQLite core and never invoke the
-** sqlite3_io_methods.xFileControl method.
-** ^The [SQLITE_FCNTL_FILE_POINTER] value for the op parameter causes
-** a pointer to the underlying [sqlite3_file] object to be written into
-** the space pointed to by the 4th parameter.  The
-** [SQLITE_FCNTL_JOURNAL_POINTER] works similarly except that it returns
-** the [sqlite3_file] object associated with the journal file instead of
-** the main database.  The [SQLITE_FCNTL_VFS_POINTER] opcode returns
-** a pointer to the underlying [sqlite3_vfs] object for the file.
-** The [SQLITE_FCNTL_DATA_VERSION] returns the data version counter
-** from the pager.
-**
-** ^If the second parameter (zDbName) does not match the name of any
-** open database file, then SQLITE_ERROR is returned.  ^This error
-** code is not remembered and will not be recalled by [sqlite3_errcode()]
-** or [sqlite3_errmsg()].  The underlying xFileControl method might
-** also return SQLITE_ERROR.  There is no way to distinguish between
-** an incorrect zDbName and an SQLITE_ERROR return from the underlying
-** xFileControl method.
-**
-** See also: [file control opcodes]
-*/
-SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
-
-/*
-** CAPI3REF: Testing Interface
-**
-** ^The sqlite3_test_control() interface is used to read out internal
-** state of SQLite and to inject faults into SQLite for testing
-** purposes.  ^The first parameter is an operation code that determines
-** the number, meaning, and operation of all subsequent parameters.
-**
-** This interface is not for use by applications.  It exists solely
-** for verifying the correct operation of the SQLite library.  Depending
-** on how the SQLite library is compiled, this interface might not exist.
-**
-** The details of the operation codes, their meanings, the parameters
-** they take, and what they do are all subject to change without notice.
-** Unlike most of the SQLite API, this function is not guaranteed to
-** operate consistently from one release to the next.
-*/
-SQLITE_API int sqlite3_test_control(int op, ...);
-
-/*
-** CAPI3REF: Testing Interface Operation Codes
-**
-** These constants are the valid operation code parameters used
-** as the first argument to [sqlite3_test_control()].
-**
-** These parameters and their meanings are subject to change
-** without notice.  These values are for testing purposes only.
-** Applications should not use any of these parameters or the
-** [sqlite3_test_control()] interface.
-*/
-#define SQLITE_TESTCTRL_FIRST                    5
-#define SQLITE_TESTCTRL_PRNG_SAVE                5
-#define SQLITE_TESTCTRL_PRNG_RESTORE             6
-#define SQLITE_TESTCTRL_PRNG_RESET               7  /* NOT USED */
-#define SQLITE_TESTCTRL_BITVEC_TEST              8
-#define SQLITE_TESTCTRL_FAULT_INSTALL            9
-#define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS     10
-#define SQLITE_TESTCTRL_PENDING_BYTE            11
-#define SQLITE_TESTCTRL_ASSERT                  12
-#define SQLITE_TESTCTRL_ALWAYS                  13
-#define SQLITE_TESTCTRL_RESERVE                 14  /* NOT USED */
-#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
-#define SQLITE_TESTCTRL_ISKEYWORD               16  /* NOT USED */
-#define SQLITE_TESTCTRL_SCRATCHMALLOC           17  /* NOT USED */
-#define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS      17
-#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
-#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
-#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
-#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
-#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
-#define SQLITE_TESTCTRL_BYTEORDER               22
-#define SQLITE_TESTCTRL_ISINIT                  23
-#define SQLITE_TESTCTRL_SORTER_MMAP             24
-#define SQLITE_TESTCTRL_IMPOSTER                25
-#define SQLITE_TESTCTRL_PARSER_COVERAGE         26
-#define SQLITE_TESTCTRL_RESULT_INTREAL          27
-#define SQLITE_TESTCTRL_PRNG_SEED               28
-#define SQLITE_TESTCTRL_EXTRA_SCHEMA_CHECKS     29
-#define SQLITE_TESTCTRL_SEEK_COUNT              30
-#define SQLITE_TESTCTRL_LAST                    30  /* Largest TESTCTRL */
-
-/*
-** CAPI3REF: SQL Keyword Checking
-**
-** These routines provide access to the set of SQL language keywords
-** recognized by SQLite.  Applications can uses these routines to determine
-** whether or not a specific identifier needs to be escaped (for example,
-** by enclosing in double-quotes) so as not to confuse the parser.
-**
-** The sqlite3_keyword_count() interface returns the number of distinct
-** keywords understood by SQLite.
-**
-** The sqlite3_keyword_name(N,Z,L) interface finds the N-th keyword and
-** makes *Z point to that keyword expressed as UTF8 and writes the number
-** of bytes in the keyword into *L.  The string that *Z points to is not
-** zero-terminated.  The sqlite3_keyword_name(N,Z,L) routine returns
-** SQLITE_OK if N is within bounds and SQLITE_ERROR if not. If either Z
-** or L are NULL or invalid pointers then calls to
-** sqlite3_keyword_name(N,Z,L) result in undefined behavior.
-**
-** The sqlite3_keyword_check(Z,L) interface checks to see whether or not
-** the L-byte UTF8 identifier that Z points to is a keyword, returning non-zero
-** if it is and zero if not.
-**
-** The parser used by SQLite is forgiving.  It is often possible to use
-** a keyword as an identifier as long as such use does not result in a
-** parsing ambiguity.  For example, the statement
-** "CREATE TABLE BEGIN(REPLACE,PRAGMA,END);" is accepted by SQLite, and
-** creates a new table named "BEGIN" with three columns named
-** "REPLACE", "PRAGMA", and "END".  Nevertheless, best practice is to avoid
-** using keywords as identifiers.  Common techniques used to avoid keyword
-** name collisions include:
-** <ul>
-** <li> Put all identifier names inside double-quotes.  This is the official
-**      SQL way to escape identifier names.
-** <li> Put identifier names inside &#91;...&#93;.  This is not standard SQL,
-**      but it is what SQL Server does and so lots of programmers use this
-**      technique.
-** <li> Begin every identifier with the letter "Z" as no SQL keywords start
-**      with "Z".
-** <li> Include a digit somewhere in every identifier name.
-** </ul>
-**
-** Note that the number of keywords understood by SQLite can depend on
-** compile-time options.  For example, "VACUUM" is not a keyword if
-** SQLite is compiled with the [-DSQLITE_OMIT_VACUUM] option.  Also,
-** new keywords may be added to future releases of SQLite.
-*/
-SQLITE_API int sqlite3_keyword_count(void);
-SQLITE_API int sqlite3_keyword_name(int,const char**,int*);
-SQLITE_API int sqlite3_keyword_check(const char*,int);
-
-/*
-** CAPI3REF: Dynamic String Object
-** KEYWORDS: {dynamic string}
-**
-** An instance of the sqlite3_str object contains a dynamically-sized
-** string under construction.
-**
-** The lifecycle of an sqlite3_str object is as follows:
-** <ol>
-** <li> ^The sqlite3_str object is created using [sqlite3_str_new()].
-** <li> ^Text is appended to the sqlite3_str object using various
-** methods, such as [sqlite3_str_appendf()].
-** <li> ^The sqlite3_str object is destroyed and the string it created
-** is returned using the [sqlite3_str_finish()] interface.
-** </ol>
-*/
-typedef struct sqlite3_str sqlite3_str;
-
-/*
-** CAPI3REF: Create A New Dynamic String Object
-** CONSTRUCTOR: sqlite3_str
-**
-** ^The [sqlite3_str_new(D)] interface allocates and initializes
-** a new [sqlite3_str] object.  To avoid memory leaks, the object returned by
-** [sqlite3_str_new()] must be freed by a subsequent call to
-** [sqlite3_str_finish(X)].
-**
-** ^The [sqlite3_str_new(D)] interface always returns a pointer to a
-** valid [sqlite3_str] object, though in the event of an out-of-memory
-** error the returned object might be a special singleton that will
-** silently reject new text, always return SQLITE_NOMEM from
-** [sqlite3_str_errcode()], always return 0 for
-** [sqlite3_str_length()], and always return NULL from
-** [sqlite3_str_finish(X)].  It is always safe to use the value
-** returned by [sqlite3_str_new(D)] as the sqlite3_str parameter
-** to any of the other [sqlite3_str] methods.
-**
-** The D parameter to [sqlite3_str_new(D)] may be NULL.  If the
-** D parameter in [sqlite3_str_new(D)] is not NULL, then the maximum
-** length of the string contained in the [sqlite3_str] object will be
-** the value set for [sqlite3_limit](D,[SQLITE_LIMIT_LENGTH]) instead
-** of [SQLITE_MAX_LENGTH].
-*/
-SQLITE_API sqlite3_str *sqlite3_str_new(sqlite3*);
-
-/*
-** CAPI3REF: Finalize A Dynamic String
-** DESTRUCTOR: sqlite3_str
-**
-** ^The [sqlite3_str_finish(X)] interface destroys the sqlite3_str object X
-** and returns a pointer to a memory buffer obtained from [sqlite3_malloc64()]
-** that contains the constructed string.  The calling application should
-** pass the returned value to [sqlite3_free()] to avoid a memory leak.
-** ^The [sqlite3_str_finish(X)] interface may return a NULL pointer if any
-** errors were encountered during construction of the string.  ^The
-** [sqlite3_str_finish(X)] interface will also return a NULL pointer if the
-** string in [sqlite3_str] object X is zero bytes long.
-*/
-SQLITE_API char *sqlite3_str_finish(sqlite3_str*);
-
-/*
-** CAPI3REF: Add Content To A Dynamic String
-** METHOD: sqlite3_str
-**
-** These interfaces add content to an sqlite3_str object previously obtained
-** from [sqlite3_str_new()].
-**
-** ^The [sqlite3_str_appendf(X,F,...)] and
-** [sqlite3_str_vappendf(X,F,V)] interfaces uses the [built-in printf]
-** functionality of SQLite to append formatted text onto the end of
-** [sqlite3_str] object X.
-**
-** ^The [sqlite3_str_append(X,S,N)] method appends exactly N bytes from string S
-** onto the end of the [sqlite3_str] object X.  N must be non-negative.
-** S must contain at least N non-zero bytes of content.  To append a
-** zero-terminated string in its entirety, use the [sqlite3_str_appendall()]
-** method instead.
-**
-** ^The [sqlite3_str_appendall(X,S)] method appends the complete content of
-** zero-terminated string S onto the end of [sqlite3_str] object X.
-**
-** ^The [sqlite3_str_appendchar(X,N,C)] method appends N copies of the
-** single-byte character C onto the end of [sqlite3_str] object X.
-** ^This method can be used, for example, to add whitespace indentation.
-**
-** ^The [sqlite3_str_reset(X)] method resets the string under construction
-** inside [sqlite3_str] object X back to zero bytes in length.
-**
-** These methods do not return a result code.  ^If an error occurs, that fact
-** is recorded in the [sqlite3_str] object and can be recovered by a
-** subsequent call to [sqlite3_str_errcode(X)].
-*/
-SQLITE_API void sqlite3_str_appendf(sqlite3_str*, const char *zFormat, ...);
-SQLITE_API void sqlite3_str_vappendf(sqlite3_str*, const char *zFormat, va_list);
-SQLITE_API void sqlite3_str_append(sqlite3_str*, const char *zIn, int N);
-SQLITE_API void sqlite3_str_appendall(sqlite3_str*, const char *zIn);
-SQLITE_API void sqlite3_str_appendchar(sqlite3_str*, int N, char C);
-SQLITE_API void sqlite3_str_reset(sqlite3_str*);
-
-/*
-** CAPI3REF: Status Of A Dynamic String
-** METHOD: sqlite3_str
-**
-** These interfaces return the current status of an [sqlite3_str] object.
-**
-** ^If any prior errors have occurred while constructing the dynamic string
-** in sqlite3_str X, then the [sqlite3_str_errcode(X)] method will return
-** an appropriate error code.  ^The [sqlite3_str_errcode(X)] method returns
-** [SQLITE_NOMEM] following any out-of-memory error, or
-** [SQLITE_TOOBIG] if the size of the dynamic string exceeds
-** [SQLITE_MAX_LENGTH], or [SQLITE_OK] if there have been no errors.
-**
-** ^The [sqlite3_str_length(X)] method returns the current length, in bytes,
-** of the dynamic string under construction in [sqlite3_str] object X.
-** ^The length returned by [sqlite3_str_length(X)] does not include the
-** zero-termination byte.
-**
-** ^The [sqlite3_str_value(X)] method returns a pointer to the current
-** content of the dynamic string under construction in X.  The value
-** returned by [sqlite3_str_value(X)] is managed by the sqlite3_str object X
-** and might be freed or altered by any subsequent method on the same
-** [sqlite3_str] object.  Applications must not used the pointer returned
-** [sqlite3_str_value(X)] after any subsequent method call on the same
-** object.  ^Applications may change the content of the string returned
-** by [sqlite3_str_value(X)] as long as they do not write into any bytes
-** outside the range of 0 to [sqlite3_str_length(X)] and do not read or
-** write any byte after any subsequent sqlite3_str method call.
-*/
-SQLITE_API int sqlite3_str_errcode(sqlite3_str*);
-SQLITE_API int sqlite3_str_length(sqlite3_str*);
-SQLITE_API char *sqlite3_str_value(sqlite3_str*);
-
-/*
-** CAPI3REF: SQLite Runtime Status
-**
-** ^These interfaces are used to retrieve runtime status information
-** about the performance of SQLite, and optionally to reset various
-** highwater marks.  ^The first argument is an integer code for
-** the specific parameter to measure.  ^(Recognized integer codes
-** are of the form [status parameters | SQLITE_STATUS_...].)^
-** ^The current value of the parameter is returned into *pCurrent.
-** ^The highest recorded value is returned in *pHighwater.  ^If the
-** resetFlag is true, then the highest record value is reset after
-** *pHighwater is written.  ^(Some parameters do not record the highest
-** value.  For those parameters
-** nothing is written into *pHighwater and the resetFlag is ignored.)^
-** ^(Other parameters record only the highwater mark and not the current
-** value.  For these latter parameters nothing is written into *pCurrent.)^
-**
-** ^The sqlite3_status() and sqlite3_status64() routines return
-** SQLITE_OK on success and a non-zero [error code] on failure.
-**
-** If either the current value or the highwater mark is too large to
-** be represented by a 32-bit integer, then the values returned by
-** sqlite3_status() are undefined.
-**
-** See also: [sqlite3_db_status()]
-*/
-SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
-SQLITE_API int sqlite3_status64(
-  int op,
-  sqlite3_int64 *pCurrent,
-  sqlite3_int64 *pHighwater,
-  int resetFlag
-);
-
-
-/*
-** CAPI3REF: Status Parameters
-** KEYWORDS: {status parameters}
-**
-** These integer constants designate various run-time status parameters
-** that can be returned by [sqlite3_status()].
-**
-** <dl>
-** [[SQLITE_STATUS_MEMORY_USED]] ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
-** <dd>This parameter is the current amount of memory checked out
-** using [sqlite3_malloc()], either directly or indirectly.  The
-** figure includes calls made to [sqlite3_malloc()] by the application
-** and internal memory usage by the SQLite library.  Auxiliary page-cache
-** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
-** this parameter.  The amount returned is the sum of the allocation
-** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
-**
-** [[SQLITE_STATUS_MALLOC_SIZE]] ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
-** <dd>This parameter records the largest memory allocation request
-** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
-** internal equivalents).  Only the value returned in the
-** *pHighwater parameter to [sqlite3_status()] is of interest.
-** The value written into the *pCurrent parameter is undefined.</dd>)^
-**
-** [[SQLITE_STATUS_MALLOC_COUNT]] ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
-** <dd>This parameter records the number of separate memory allocations
-** currently checked out.</dd>)^
-**
-** [[SQLITE_STATUS_PAGECACHE_USED]] ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
-** <dd>This parameter returns the number of pages used out of the
-** [pagecache memory allocator] that was configured using
-** [SQLITE_CONFIG_PAGECACHE].  The
-** value returned is in pages, not in bytes.</dd>)^
-**
-** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]]
-** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
-** <dd>This parameter returns the number of bytes of page cache
-** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
-** buffer and where forced to overflow to [sqlite3_malloc()].  The
-** returned value includes allocations that overflowed because they
-** where too large (they were larger than the "sz" parameter to
-** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
-** no space was left in the page cache.</dd>)^
-**
-** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
-** <dd>This parameter records the largest memory allocation request
-** handed to the [pagecache memory allocator].  Only the value returned in the
-** *pHighwater parameter to [sqlite3_status()] is of interest.
-** The value written into the *pCurrent parameter is undefined.</dd>)^
-**
-** [[SQLITE_STATUS_SCRATCH_USED]] <dt>SQLITE_STATUS_SCRATCH_USED</dt>
-** <dd>No longer used.</dd>
-**
-** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
-** <dd>No longer used.</dd>
-**
-** [[SQLITE_STATUS_SCRATCH_SIZE]] <dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
-** <dd>No longer used.</dd>
-**
-** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
-** <dd>The *pHighwater parameter records the deepest parser stack.
-** The *pCurrent value is undefined.  The *pHighwater value is only
-** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
-** </dl>
-**
-** New status parameters may be added from time to time.
-*/
-#define SQLITE_STATUS_MEMORY_USED          0
-#define SQLITE_STATUS_PAGECACHE_USED       1
-#define SQLITE_STATUS_PAGECACHE_OVERFLOW   2
-#define SQLITE_STATUS_SCRATCH_USED         3  /* NOT USED */
-#define SQLITE_STATUS_SCRATCH_OVERFLOW     4  /* NOT USED */
-#define SQLITE_STATUS_MALLOC_SIZE          5
-#define SQLITE_STATUS_PARSER_STACK         6
-#define SQLITE_STATUS_PAGECACHE_SIZE       7
-#define SQLITE_STATUS_SCRATCH_SIZE         8  /* NOT USED */
-#define SQLITE_STATUS_MALLOC_COUNT         9
-
-/*
-** CAPI3REF: Database Connection Status
-** METHOD: sqlite3
-**
-** ^This interface is used to retrieve runtime status information
-** about a single [database connection].  ^The first argument is the
-** database connection object to be interrogated.  ^The second argument
-** is an integer constant, taken from the set of
-** [SQLITE_DBSTATUS options], that
-** determines the parameter to interrogate.  The set of
-** [SQLITE_DBSTATUS options] is likely
-** to grow in future releases of SQLite.
-**
-** ^The current value of the requested parameter is written into *pCur
-** and the highest instantaneous value is written into *pHiwtr.  ^If
-** the resetFlg is true, then the highest instantaneous value is
-** reset back down to the current value.
-**
-** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
-** non-zero [error code] on failure.
-**
-** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
-*/
-SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
-
-/*
-** CAPI3REF: Status Parameters for database connections
-** KEYWORDS: {SQLITE_DBSTATUS options}
-**
-** These constants are the available integer "verbs" that can be passed as
-** the second argument to the [sqlite3_db_status()] interface.
-**
-** New verbs may be added in future releases of SQLite. Existing verbs
-** might be discontinued. Applications should check the return code from
-** [sqlite3_db_status()] to make sure that the call worked.
-** The [sqlite3_db_status()] interface will return a non-zero error code
-** if a discontinued or unsupported verb is invoked.
-**
-** <dl>
-** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
-** <dd>This parameter returns the number of lookaside memory slots currently
-** checked out.</dd>)^
-**
-** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt>
-** <dd>This parameter returns the number of malloc attempts that were
-** satisfied using lookaside memory. Only the high-water value is meaningful;
-** the current value is always zero.)^
-**
-** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]]
-** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt>
-** <dd>This parameter returns the number malloc attempts that might have
-** been satisfied using lookaside memory but failed due to the amount of
-** memory requested being larger than the lookaside slot size.
-** Only the high-water value is meaningful;
-** the current value is always zero.)^
-**
-** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]]
-** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt>
-** <dd>This parameter returns the number malloc attempts that might have
-** been satisfied using lookaside memory but failed due to all lookaside
-** memory already being in use.
-** Only the high-water value is meaningful;
-** the current value is always zero.)^
-**
-** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
-** <dd>This parameter returns the approximate number of bytes of heap
-** memory used by all pager caches associated with the database connection.)^
-** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
-**
-** [[SQLITE_DBSTATUS_CACHE_USED_SHARED]]
-** ^(<dt>SQLITE_DBSTATUS_CACHE_USED_SHARED</dt>
-** <dd>This parameter is similar to DBSTATUS_CACHE_USED, except that if a
-** pager cache is shared between two or more connections the bytes of heap
-** memory used by that pager cache is divided evenly between the attached
-** connections.)^  In other words, if none of the pager caches associated
-** with the database connection are shared, this request returns the same
-** value as DBSTATUS_CACHE_USED. Or, if one or more or the pager caches are
-** shared, the value returned by this call will be smaller than that returned
-** by DBSTATUS_CACHE_USED. ^The highwater mark associated with
-** SQLITE_DBSTATUS_CACHE_USED_SHARED is always 0.
-**
-** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
-** <dd>This parameter returns the approximate number of bytes of heap
-** memory used to store the schema for all databases associated
-** with the connection - main, temp, and any [ATTACH]-ed databases.)^
-** ^The full amount of memory used by the schemas is reported, even if the
-** schema memory is shared with other database connections due to
-** [shared cache mode] being enabled.
-** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
-**
-** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
-** <dd>This parameter returns the approximate number of bytes of heap
-** and lookaside memory used by all prepared statements associated with
-** the database connection.)^
-** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
-** </dd>
-**
-** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
-** <dd>This parameter returns the number of pager cache hits that have
-** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT
-** is always 0.
-** </dd>
-**
-** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(<dt>SQLITE_DBSTATUS_CACHE_MISS</dt>
-** <dd>This parameter returns the number of pager cache misses that have
-** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS
-** is always 0.
-** </dd>
-**
-** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(<dt>SQLITE_DBSTATUS_CACHE_WRITE</dt>
-** <dd>This parameter returns the number of dirty cache entries that have
-** been written to disk. Specifically, the number of pages written to the
-** wal file in wal mode databases, or the number of pages written to the
-** database file in rollback mode databases. Any pages written as part of
-** transaction rollback or database recovery operations are not included.
-** If an IO or other error occurs while writing a page to disk, the effect
-** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
-** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
-** </dd>
-**
-** [[SQLITE_DBSTATUS_CACHE_SPILL]] ^(<dt>SQLITE_DBSTATUS_CACHE_SPILL</dt>
-** <dd>This parameter returns the number of dirty cache entries that have
-** been written to disk in the middle of a transaction due to the page
-** cache overflowing. Transactions are more efficient if they are written
-** to disk all at once. When pages spill mid-transaction, that introduces
-** additional overhead. This parameter can be used help identify
-** inefficiencies that can be resolved by increasing the cache size.
-** </dd>
-**
-** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(<dt>SQLITE_DBSTATUS_DEFERRED_FKS</dt>
-** <dd>This parameter returns zero for the current value if and only if
-** all foreign key constraints (deferred or immediate) have been
-** resolved.)^  ^The highwater mark is always 0.
-** </dd>
-** </dl>
-*/
-#define SQLITE_DBSTATUS_LOOKASIDE_USED       0
-#define SQLITE_DBSTATUS_CACHE_USED           1
-#define SQLITE_DBSTATUS_SCHEMA_USED          2
-#define SQLITE_DBSTATUS_STMT_USED            3
-#define SQLITE_DBSTATUS_LOOKASIDE_HIT        4
-#define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE  5
-#define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL  6
-#define SQLITE_DBSTATUS_CACHE_HIT            7
-#define SQLITE_DBSTATUS_CACHE_MISS           8
-#define SQLITE_DBSTATUS_CACHE_WRITE          9
-#define SQLITE_DBSTATUS_DEFERRED_FKS        10
-#define SQLITE_DBSTATUS_CACHE_USED_SHARED   11
-#define SQLITE_DBSTATUS_CACHE_SPILL         12
-#define SQLITE_DBSTATUS_MAX                 12   /* Largest defined DBSTATUS */
-
-
-/*
-** CAPI3REF: Prepared Statement Status
-** METHOD: sqlite3_stmt
-**
-** ^(Each prepared statement maintains various
-** [SQLITE_STMTSTATUS counters] that measure the number
-** of times it has performed specific operations.)^  These counters can
-** be used to monitor the performance characteristics of the prepared
-** statements.  For example, if the number of table steps greatly exceeds
-** the number of table searches or result rows, that would tend to indicate
-** that the prepared statement is using a full table scan rather than
-** an index.
-**
-** ^(This interface is used to retrieve and reset counter values from
-** a [prepared statement].  The first argument is the prepared statement
-** object to be interrogated.  The second argument
-** is an integer code for a specific [SQLITE_STMTSTATUS counter]
-** to be interrogated.)^
-** ^The current value of the requested counter is returned.
-** ^If the resetFlg is true, then the counter is reset to zero after this
-** interface call returns.
-**
-** See also: [sqlite3_status()] and [sqlite3_db_status()].
-*/
-SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
-
-/*
-** CAPI3REF: Status Parameters for prepared statements
-** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
-**
-** These preprocessor macros define integer codes that name counter
-** values associated with the [sqlite3_stmt_status()] interface.
-** The meanings of the various counters are as follows:
-**
-** <dl>
-** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]] <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
-** <dd>^This is the number of times that SQLite has stepped forward in
-** a table as part of a full table scan.  Large numbers for this counter
-** may indicate opportunities for performance improvement through
-** careful use of indices.</dd>
-**
-** [[SQLITE_STMTSTATUS_SORT]] <dt>SQLITE_STMTSTATUS_SORT</dt>
-** <dd>^This is the number of sort operations that have occurred.
-** A non-zero value in this counter may indicate an opportunity to
-** improvement performance through careful use of indices.</dd>
-**
-** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
-** <dd>^This is the number of rows inserted into transient indices that
-** were created automatically in order to help joins run faster.
-** A non-zero value in this counter may indicate an opportunity to
-** improvement performance by adding permanent indices that do not
-** need to be reinitialized each time the statement is run.</dd>
-**
-** [[SQLITE_STMTSTATUS_VM_STEP]] <dt>SQLITE_STMTSTATUS_VM_STEP</dt>
-** <dd>^This is the number of virtual machine operations executed
-** by the prepared statement if that number is less than or equal
-** to 2147483647.  The number of virtual machine operations can be
-** used as a proxy for the total work done by the prepared statement.
-** If the number of virtual machine operations exceeds 2147483647
-** then the value returned by this statement status code is undefined.
-**
-** [[SQLITE_STMTSTATUS_REPREPARE]] <dt>SQLITE_STMTSTATUS_REPREPARE</dt>
-** <dd>^This is the number of times that the prepare statement has been
-** automatically regenerated due to schema changes or changes to
-** [bound parameters] that might affect the query plan.
-**
-** [[SQLITE_STMTSTATUS_RUN]] <dt>SQLITE_STMTSTATUS_RUN</dt>
-** <dd>^This is the number of times that the prepared statement has
-** been run.  A single "run" for the purposes of this counter is one
-** or more calls to [sqlite3_step()] followed by a call to [sqlite3_reset()].
-** The counter is incremented on the first [sqlite3_step()] call of each
-** cycle.
-**
-** [[SQLITE_STMTSTATUS_MEMUSED]] <dt>SQLITE_STMTSTATUS_MEMUSED</dt>
-** <dd>^This is the approximate number of bytes of heap memory
-** used to store the prepared statement.  ^This value is not actually
-** a counter, and so the resetFlg parameter to sqlite3_stmt_status()
-** is ignored when the opcode is SQLITE_STMTSTATUS_MEMUSED.
-** </dd>
-** </dl>
-*/
-#define SQLITE_STMTSTATUS_FULLSCAN_STEP     1
-#define SQLITE_STMTSTATUS_SORT              2
-#define SQLITE_STMTSTATUS_AUTOINDEX         3
-#define SQLITE_STMTSTATUS_VM_STEP           4
-#define SQLITE_STMTSTATUS_REPREPARE         5
-#define SQLITE_STMTSTATUS_RUN               6
-#define SQLITE_STMTSTATUS_MEMUSED           99
-
-/*
-** CAPI3REF: Custom Page Cache Object
-**
-** The sqlite3_pcache type is opaque.  It is implemented by
-** the pluggable module.  The SQLite core has no knowledge of
-** its size or internal structure and never deals with the
-** sqlite3_pcache object except by holding and passing pointers
-** to the object.
-**
-** See [sqlite3_pcache_methods2] for additional information.
-*/
-typedef struct sqlite3_pcache sqlite3_pcache;
-
-/*
-** CAPI3REF: Custom Page Cache Object
-**
-** The sqlite3_pcache_page object represents a single page in the
-** page cache.  The page cache will allocate instances of this
-** object.  Various methods of the page cache use pointers to instances
-** of this object as parameters or as their return value.
-**
-** See [sqlite3_pcache_methods2] for additional information.
-*/
-typedef struct sqlite3_pcache_page sqlite3_pcache_page;
-struct sqlite3_pcache_page {
-  void *pBuf;        /* The content of the page */
-  void *pExtra;      /* Extra information associated with the page */
-};
-
-/*
-** CAPI3REF: Application Defined Page Cache.
-** KEYWORDS: {page cache}
-**
-** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can
-** register an alternative page cache implementation by passing in an
-** instance of the sqlite3_pcache_methods2 structure.)^
-** In many applications, most of the heap memory allocated by
-** SQLite is used for the page cache.
-** By implementing a
-** custom page cache using this API, an application can better control
-** the amount of memory consumed by SQLite, the way in which
-** that memory is allocated and released, and the policies used to
-** determine exactly which parts of a database file are cached and for
-** how long.
-**
-** The alternative page cache mechanism is an
-** extreme measure that is only needed by the most demanding applications.
-** The built-in page cache is recommended for most uses.
-**
-** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an
-** internal buffer by SQLite within the call to [sqlite3_config].  Hence
-** the application may discard the parameter after the call to
-** [sqlite3_config()] returns.)^
-**
-** [[the xInit() page cache method]]
-** ^(The xInit() method is called once for each effective
-** call to [sqlite3_initialize()])^
-** (usually only once during the lifetime of the process). ^(The xInit()
-** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^
-** The intent of the xInit() method is to set up global data structures
-** required by the custom page cache implementation.
-** ^(If the xInit() method is NULL, then the
-** built-in default page cache is used instead of the application defined
-** page cache.)^
-**
-** [[the xShutdown() page cache method]]
-** ^The xShutdown() method is called by [sqlite3_shutdown()].
-** It can be used to clean up
-** any outstanding resources before process shutdown, if required.
-** ^The xShutdown() method may be NULL.
-**
-** ^SQLite automatically serializes calls to the xInit method,
-** so the xInit method need not be threadsafe.  ^The
-** xShutdown method is only called from [sqlite3_shutdown()] so it does
-** not need to be threadsafe either.  All other methods must be threadsafe
-** in multithreaded applications.
-**
-** ^SQLite will never invoke xInit() more than once without an intervening
-** call to xShutdown().
-**
-** [[the xCreate() page cache methods]]
-** ^SQLite invokes the xCreate() method to construct a new cache instance.
-** SQLite will typically create one cache instance for each open database file,
-** though this is not guaranteed. ^The
-** first parameter, szPage, is the size in bytes of the pages that must
-** be allocated by the cache.  ^szPage will always a power of two.  ^The
-** second parameter szExtra is a number of bytes of extra storage
-** associated with each page cache entry.  ^The szExtra parameter will
-** a number less than 250.  SQLite will use the
-** extra szExtra bytes on each page to store metadata about the underlying
-** database page on disk.  The value passed into szExtra depends
-** on the SQLite version, the target platform, and how SQLite was compiled.
-** ^The third argument to xCreate(), bPurgeable, is true if the cache being
-** created will be used to cache database pages of a file stored on disk, or
-** false if it is used for an in-memory database. The cache implementation
-** does not have to do anything special based with the value of bPurgeable;
-** it is purely advisory.  ^On a cache where bPurgeable is false, SQLite will
-** never invoke xUnpin() except to deliberately delete a page.
-** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
-** false will always have the "discard" flag set to true.
-** ^Hence, a cache created with bPurgeable false will
-** never contain any unpinned pages.
-**
-** [[the xCachesize() page cache method]]
-** ^(The xCachesize() method may be called at any time by SQLite to set the
-** suggested maximum cache-size (number of pages stored by) the cache
-** instance passed as the first argument. This is the value configured using
-** the SQLite "[PRAGMA cache_size]" command.)^  As with the bPurgeable
-** parameter, the implementation is not required to do anything with this
-** value; it is advisory only.
-**
-** [[the xPagecount() page cache methods]]
-** The xPagecount() method must return the number of pages currently
-** stored in the cache, both pinned and unpinned.
-**
-** [[the xFetch() page cache methods]]
-** The xFetch() method locates a page in the cache and returns a pointer to
-** an sqlite3_pcache_page object associated with that page, or a NULL pointer.
-** The pBuf element of the returned sqlite3_pcache_page object will be a
-** pointer to a buffer of szPage bytes used to store the content of a
-** single database page.  The pExtra element of sqlite3_pcache_page will be
-** a pointer to the szExtra bytes of extra storage that SQLite has requested
-** for each entry in the page cache.
-**
-** The page to be fetched is determined by the key. ^The minimum key value
-** is 1.  After it has been retrieved using xFetch, the page is considered
-** to be "pinned".
-**
-** If the requested page is already in the page cache, then the page cache
-** implementation must return a pointer to the page buffer with its content
-** intact.  If the requested page is not already in the cache, then the
-** cache implementation should use the value of the createFlag
-** parameter to help it determined what action to take:
-**
-** <table border=1 width=85% align=center>
-** <tr><th> createFlag <th> Behavior when page is not already in cache
-** <tr><td> 0 <td> Do not allocate a new page.  Return NULL.
-** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
-**                 Otherwise return NULL.
-** <tr><td> 2 <td> Make every effort to allocate a new page.  Only return
-**                 NULL if allocating a new page is effectively impossible.
-** </table>
-**
-** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1.  SQLite
-** will only use a createFlag of 2 after a prior call with a createFlag of 1
-** failed.)^  In between the xFetch() calls, SQLite may
-** attempt to unpin one or more cache pages by spilling the content of
-** pinned pages to disk and synching the operating system disk cache.
-**
-** [[the xUnpin() page cache method]]
-** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
-** as its second argument.  If the third parameter, discard, is non-zero,
-** then the page must be evicted from the cache.
-** ^If the discard parameter is
-** zero, then the page may be discarded or retained at the discretion of
-** page cache implementation. ^The page cache implementation
-** may choose to evict unpinned pages at any time.
-**
-** The cache must not perform any reference counting. A single
-** call to xUnpin() unpins the page regardless of the number of prior calls
-** to xFetch().
-**
-** [[the xRekey() page cache methods]]
-** The xRekey() method is used to change the key value associated with the
-** page passed as the second argument. If the cache
-** previously contains an entry associated with newKey, it must be
-** discarded. ^Any prior cache entry associated with newKey is guaranteed not
-** to be pinned.
-**
-** When SQLite calls the xTruncate() method, the cache must discard all
-** existing cache entries with page numbers (keys) greater than or equal
-** to the value of the iLimit parameter passed to xTruncate(). If any
-** of these pages are pinned, they are implicitly unpinned, meaning that
-** they can be safely discarded.
-**
-** [[the xDestroy() page cache method]]
-** ^The xDestroy() method is used to delete a cache allocated by xCreate().
-** All resources associated with the specified cache should be freed. ^After
-** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
-** handle invalid, and will not use it with any other sqlite3_pcache_methods2
-** functions.
-**
-** [[the xShrink() page cache method]]
-** ^SQLite invokes the xShrink() method when it wants the page cache to
-** free up as much of heap memory as possible.  The page cache implementation
-** is not obligated to free any memory, but well-behaved implementations should
-** do their best.
-*/
-typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
-struct sqlite3_pcache_methods2 {
-  int iVersion;
-  void *pArg;
-  int (*xInit)(void*);
-  void (*xShutdown)(void*);
-  sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
-  void (*xCachesize)(sqlite3_pcache*, int nCachesize);
-  int (*xPagecount)(sqlite3_pcache*);
-  sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
-  void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard);
-  void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*,
-      unsigned oldKey, unsigned newKey);
-  void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
-  void (*xDestroy)(sqlite3_pcache*);
-  void (*xShrink)(sqlite3_pcache*);
-};
-
-/*
-** This is the obsolete pcache_methods object that has now been replaced
-** by sqlite3_pcache_methods2.  This object is not used by SQLite.  It is
-** retained in the header file for backwards compatibility only.
-*/
-typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
-struct sqlite3_pcache_methods {
-  void *pArg;
-  int (*xInit)(void*);
-  void (*xShutdown)(void*);
-  sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
-  void (*xCachesize)(sqlite3_pcache*, int nCachesize);
-  int (*xPagecount)(sqlite3_pcache*);
-  void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
-  void (*xUnpin)(sqlite3_pcache*, void*, int discard);
-  void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
-  void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
-  void (*xDestroy)(sqlite3_pcache*);
-};
-
-
-/*
-** CAPI3REF: Online Backup Object
-**
-** The sqlite3_backup object records state information about an ongoing
-** online backup operation.  ^The sqlite3_backup object is created by
-** a call to [sqlite3_backup_init()] and is destroyed by a call to
-** [sqlite3_backup_finish()].
-**
-** See Also: [Using the SQLite Online Backup API]
-*/
-typedef struct sqlite3_backup sqlite3_backup;
-
-/*
-** CAPI3REF: Online Backup API.
-**
-** The backup API copies the content of one database into another.
-** It is useful either for creating backups of databases or
-** for copying in-memory databases to or from persistent files.
-**
-** See Also: [Using the SQLite Online Backup API]
-**
-** ^SQLite holds a write transaction open on the destination database file
-** for the duration of the backup operation.
-** ^The source database is read-locked only while it is being read;
-** it is not locked continuously for the entire backup operation.
-** ^Thus, the backup may be performed on a live source database without
-** preventing other database connections from
-** reading or writing to the source database while the backup is underway.
-**
-** ^(To perform a backup operation:
-**   <ol>
-**     <li><b>sqlite3_backup_init()</b> is called once to initialize the
-**         backup,
-**     <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
-**         the data between the two databases, and finally
-**     <li><b>sqlite3_backup_finish()</b> is called to release all resources
-**         associated with the backup operation.
-**   </ol>)^
-** There should be exactly one call to sqlite3_backup_finish() for each
-** successful call to sqlite3_backup_init().
-**
-** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
-**
-** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
-** [database connection] associated with the destination database
-** and the database name, respectively.
-** ^The database name is "main" for the main database, "temp" for the
-** temporary database, or the name specified after the AS keyword in
-** an [ATTACH] statement for an attached database.
-** ^The S and M arguments passed to
-** sqlite3_backup_init(D,N,S,M) identify the [database connection]
-** and database name of the source database, respectively.
-** ^The source and destination [database connections] (parameters S and D)
-** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
-** an error.
-**
-** ^A call to sqlite3_backup_init() will fail, returning NULL, if
-** there is already a read or read-write transaction open on the
-** destination database.
-**
-** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
-** returned and an error code and error message are stored in the
-** destination [database connection] D.
-** ^The error code and message for the failed call to sqlite3_backup_init()
-** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
-** [sqlite3_errmsg16()] functions.
-** ^A successful call to sqlite3_backup_init() returns a pointer to an
-** [sqlite3_backup] object.
-** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
-** sqlite3_backup_finish() functions to perform the specified backup
-** operation.
-**
-** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
-**
-** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
-** the source and destination databases specified by [sqlite3_backup] object B.
-** ^If N is negative, all remaining source pages are copied.
-** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
-** are still more pages to be copied, then the function returns [SQLITE_OK].
-** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
-** from source to destination, then it returns [SQLITE_DONE].
-** ^If an error occurs while running sqlite3_backup_step(B,N),
-** then an [error code] is returned. ^As well as [SQLITE_OK] and
-** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
-** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
-** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
-**
-** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
-** <ol>
-** <li> the destination database was opened read-only, or
-** <li> the destination database is using write-ahead-log journaling
-** and the destination and source page sizes differ, or
-** <li> the destination database is an in-memory database and the
-** destination and source page sizes differ.
-** </ol>)^
-**
-** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
-** the [sqlite3_busy_handler | busy-handler function]
-** is invoked (if one is specified). ^If the
-** busy-handler returns non-zero before the lock is available, then
-** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
-** sqlite3_backup_step() can be retried later. ^If the source
-** [database connection]
-** is being used to write to the source database when sqlite3_backup_step()
-** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
-** case the call to sqlite3_backup_step() can be retried later on. ^(If
-** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
-** [SQLITE_READONLY] is returned, then
-** there is no point in retrying the call to sqlite3_backup_step(). These
-** errors are considered fatal.)^  The application must accept
-** that the backup operation has failed and pass the backup operation handle
-** to the sqlite3_backup_finish() to release associated resources.
-**
-** ^The first call to sqlite3_backup_step() obtains an exclusive lock
-** on the destination file. ^The exclusive lock is not released until either
-** sqlite3_backup_finish() is called or the backup operation is complete
-** and sqlite3_backup_step() returns [SQLITE_DONE].  ^Every call to
-** sqlite3_backup_step() obtains a [shared lock] on the source database that
-** lasts for the duration of the sqlite3_backup_step() call.
-** ^Because the source database is not locked between calls to
-** sqlite3_backup_step(), the source database may be modified mid-way
-** through the backup process.  ^If the source database is modified by an
-** external process or via a database connection other than the one being
-** used by the backup operation, then the backup will be automatically
-** restarted by the next call to sqlite3_backup_step(). ^If the source
-** database is modified by the using the same database connection as is used
-** by the backup operation, then the backup database is automatically
-** updated at the same time.
-**
-** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
-**
-** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
-** application wishes to abandon the backup operation, the application
-** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
-** ^The sqlite3_backup_finish() interfaces releases all
-** resources associated with the [sqlite3_backup] object.
-** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
-** active write-transaction on the destination database is rolled back.
-** The [sqlite3_backup] object is invalid
-** and may not be used following a call to sqlite3_backup_finish().
-**
-** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
-** sqlite3_backup_step() errors occurred, regardless or whether or not
-** sqlite3_backup_step() completed.
-** ^If an out-of-memory condition or IO error occurred during any prior
-** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
-** sqlite3_backup_finish() returns the corresponding [error code].
-**
-** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
-** is not a permanent error and does not affect the return value of
-** sqlite3_backup_finish().
-**
-** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
-** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
-**
-** ^The sqlite3_backup_remaining() routine returns the number of pages still
-** to be backed up at the conclusion of the most recent sqlite3_backup_step().
-** ^The sqlite3_backup_pagecount() routine returns the total number of pages
-** in the source database at the conclusion of the most recent
-** sqlite3_backup_step().
-** ^(The values returned by these functions are only updated by
-** sqlite3_backup_step(). If the source database is modified in a way that
-** changes the size of the source database or the number of pages remaining,
-** those changes are not reflected in the output of sqlite3_backup_pagecount()
-** and sqlite3_backup_remaining() until after the next
-** sqlite3_backup_step().)^
-**
-** <b>Concurrent Usage of Database Handles</b>
-**
-** ^The source [database connection] may be used by the application for other
-** purposes while a backup operation is underway or being initialized.
-** ^If SQLite is compiled and configured to support threadsafe database
-** connections, then the source database connection may be used concurrently
-** from within other threads.
-**
-** However, the application must guarantee that the destination
-** [database connection] is not passed to any other API (by any thread) after
-** sqlite3_backup_init() is called and before the corresponding call to
-** sqlite3_backup_finish().  SQLite does not currently check to see
-** if the application incorrectly accesses the destination [database connection]
-** and so no error code is reported, but the operations may malfunction
-** nevertheless.  Use of the destination database connection while a
-** backup is in progress might also also cause a mutex deadlock.
-**
-** If running in [shared cache mode], the application must
-** guarantee that the shared cache used by the destination database
-** is not accessed while the backup is running. In practice this means
-** that the application must guarantee that the disk file being
-** backed up to is not accessed by any connection within the process,
-** not just the specific connection that was passed to sqlite3_backup_init().
-**
-** The [sqlite3_backup] object itself is partially threadsafe. Multiple
-** threads may safely make multiple concurrent calls to sqlite3_backup_step().
-** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
-** APIs are not strictly speaking threadsafe. If they are invoked at the
-** same time as another thread is invoking sqlite3_backup_step() it is
-** possible that they return invalid values.
-*/
-SQLITE_API sqlite3_backup *sqlite3_backup_init(
-  sqlite3 *pDest,                        /* Destination database handle */
-  const char *zDestName,                 /* Destination database name */
-  sqlite3 *pSource,                      /* Source database handle */
-  const char *zSourceName                /* Source database name */
-);
-SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
-SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
-SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
-SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);
-
-/*
-** CAPI3REF: Unlock Notification
-** METHOD: sqlite3
-**
-** ^When running in shared-cache mode, a database operation may fail with
-** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
-** individual tables within the shared-cache cannot be obtained. See
-** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
-** ^This API may be used to register a callback that SQLite will invoke
-** when the connection currently holding the required lock relinquishes it.
-** ^This API is only available if the library was compiled with the
-** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
-**
-** See Also: [Using the SQLite Unlock Notification Feature].
-**
-** ^Shared-cache locks are released when a database connection concludes
-** its current transaction, either by committing it or rolling it back.
-**
-** ^When a connection (known as the blocked connection) fails to obtain a
-** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
-** identity of the database connection (the blocking connection) that
-** has locked the required resource is stored internally. ^After an
-** application receives an SQLITE_LOCKED error, it may call the
-** sqlite3_unlock_notify() method with the blocked connection handle as
-** the first argument to register for a callback that will be invoked
-** when the blocking connections current transaction is concluded. ^The
-** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
-** call that concludes the blocking connection's transaction.
-**
-** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
-** there is a chance that the blocking connection will have already
-** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
-** If this happens, then the specified callback is invoked immediately,
-** from within the call to sqlite3_unlock_notify().)^
-**
-** ^If the blocked connection is attempting to obtain a write-lock on a
-** shared-cache table, and more than one other connection currently holds
-** a read-lock on the same table, then SQLite arbitrarily selects one of
-** the other connections to use as the blocking connection.
-**
-** ^(There may be at most one unlock-notify callback registered by a
-** blocked connection. If sqlite3_unlock_notify() is called when the
-** blocked connection already has a registered unlock-notify callback,
-** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
-** called with a NULL pointer as its second argument, then any existing
-** unlock-notify callback is canceled. ^The blocked connections
-** unlock-notify callback may also be canceled by closing the blocked
-** connection using [sqlite3_close()].
-**
-** The unlock-notify callback is not reentrant. If an application invokes
-** any sqlite3_xxx API functions from within an unlock-notify callback, a
-** crash or deadlock may be the result.
-**
-** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
-** returns SQLITE_OK.
-**
-** <b>Callback Invocation Details</b>
-**
-** When an unlock-notify callback is registered, the application provides a
-** single void* pointer that is passed to the callback when it is invoked.
-** However, the signature of the callback function allows SQLite to pass
-** it an array of void* context pointers. The first argument passed to
-** an unlock-notify callback is a pointer to an array of void* pointers,
-** and the second is the number of entries in the array.
-**
-** When a blocking connection's transaction is concluded, there may be
-** more than one blocked connection that has registered for an unlock-notify
-** callback. ^If two or more such blocked connections have specified the
-** same callback function, then instead of invoking the callback function
-** multiple times, it is invoked once with the set of void* context pointers
-** specified by the blocked connections bundled together into an array.
-** This gives the application an opportunity to prioritize any actions
-** related to the set of unblocked database connections.
-**
-** <b>Deadlock Detection</b>
-**
-** Assuming that after registering for an unlock-notify callback a
-** database waits for the callback to be issued before taking any further
-** action (a reasonable assumption), then using this API may cause the
-** application to deadlock. For example, if connection X is waiting for
-** connection Y's transaction to be concluded, and similarly connection
-** Y is waiting on connection X's transaction, then neither connection
-** will proceed and the system may remain deadlocked indefinitely.
-**
-** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
-** detection. ^If a given call to sqlite3_unlock_notify() would put the
-** system in a deadlocked state, then SQLITE_LOCKED is returned and no
-** unlock-notify callback is registered. The system is said to be in
-** a deadlocked state if connection A has registered for an unlock-notify
-** callback on the conclusion of connection B's transaction, and connection
-** B has itself registered for an unlock-notify callback when connection
-** A's transaction is concluded. ^Indirect deadlock is also detected, so
-** the system is also considered to be deadlocked if connection B has
-** registered for an unlock-notify callback on the conclusion of connection
-** C's transaction, where connection C is waiting on connection A. ^Any
-** number of levels of indirection are allowed.
-**
-** <b>The "DROP TABLE" Exception</b>
-**
-** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
-** always appropriate to call sqlite3_unlock_notify(). There is however,
-** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
-** SQLite checks if there are any currently executing SELECT statements
-** that belong to the same connection. If there are, SQLITE_LOCKED is
-** returned. In this case there is no "blocking connection", so invoking
-** sqlite3_unlock_notify() results in the unlock-notify callback being
-** invoked immediately. If the application then re-attempts the "DROP TABLE"
-** or "DROP INDEX" query, an infinite loop might be the result.
-**
-** One way around this problem is to check the extended error code returned
-** by an sqlite3_step() call. ^(If there is a blocking connection, then the
-** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
-** the special "DROP TABLE/INDEX" case, the extended error code is just
-** SQLITE_LOCKED.)^
-*/
-SQLITE_API int sqlite3_unlock_notify(
-  sqlite3 *pBlocked,                          /* Waiting connection */
-  void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
-  void *pNotifyArg                            /* Argument to pass to xNotify */
-);
-
-
-/*
-** CAPI3REF: String Comparison
-**
-** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
-** and extensions to compare the contents of two buffers containing UTF-8
-** strings in a case-independent fashion, using the same definition of "case
-** independence" that SQLite uses internally when comparing identifiers.
-*/
-SQLITE_API int sqlite3_stricmp(const char *, const char *);
-SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);
-
-/*
-** CAPI3REF: String Globbing
-*
-** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if
-** string X matches the [GLOB] pattern P.
-** ^The definition of [GLOB] pattern matching used in
-** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
-** SQL dialect understood by SQLite.  ^The [sqlite3_strglob(P,X)] function
-** is case sensitive.
-**
-** Note that this routine returns zero on a match and non-zero if the strings
-** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
-**
-** See also: [sqlite3_strlike()].
-*/
-SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);
-
-/*
-** CAPI3REF: String LIKE Matching
-*
-** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if
-** string X matches the [LIKE] pattern P with escape character E.
-** ^The definition of [LIKE] pattern matching used in
-** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E"
-** operator in the SQL dialect understood by SQLite.  ^For "X LIKE P" without
-** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0.
-** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case
-** insensitive - equivalent upper and lower case ASCII characters match
-** one another.
-**
-** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though
-** only ASCII characters are case folded.
-**
-** Note that this routine returns zero on a match and non-zero if the strings
-** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
-**
-** See also: [sqlite3_strglob()].
-*/
-SQLITE_API int sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc);
-
-/*
-** CAPI3REF: Error Logging Interface
-**
-** ^The [sqlite3_log()] interface writes a message into the [error log]
-** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
-** ^If logging is enabled, the zFormat string and subsequent arguments are
-** used with [sqlite3_snprintf()] to generate the final output string.
-**
-** The sqlite3_log() interface is intended for use by extensions such as
-** virtual tables, collating functions, and SQL functions.  While there is
-** nothing to prevent an application from calling sqlite3_log(), doing so
-** is considered bad form.
-**
-** The zFormat string must not be NULL.
-**
-** To avoid deadlocks and other threading problems, the sqlite3_log() routine
-** will not use dynamically allocated memory.  The log message is stored in
-** a fixed-length buffer on the stack.  If the log message is longer than
-** a few hundred characters, it will be truncated to the length of the
-** buffer.
-*/
-SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);
-
-/*
-** CAPI3REF: Write-Ahead Log Commit Hook
-** METHOD: sqlite3
-**
-** ^The [sqlite3_wal_hook()] function is used to register a callback that
-** is invoked each time data is committed to a database in wal mode.
-**
-** ^(The callback is invoked by SQLite after the commit has taken place and
-** the associated write-lock on the database released)^, so the implementation
-** may read, write or [checkpoint] the database as required.
-**
-** ^The first parameter passed to the callback function when it is invoked
-** is a copy of the third parameter passed to sqlite3_wal_hook() when
-** registering the callback. ^The second is a copy of the database handle.
-** ^The third parameter is the name of the database that was written to -
-** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
-** is the number of pages currently in the write-ahead log file,
-** including those that were just committed.
-**
-** The callback function should normally return [SQLITE_OK].  ^If an error
-** code is returned, that error will propagate back up through the
-** SQLite code base to cause the statement that provoked the callback
-** to report an error, though the commit will have still occurred. If the
-** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
-** that does not correspond to any valid SQLite error code, the results
-** are undefined.
-**
-** A single database handle may have at most a single write-ahead log callback
-** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
-** previously registered write-ahead log callback. ^Note that the
-** [sqlite3_wal_autocheckpoint()] interface and the
-** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
-** overwrite any prior [sqlite3_wal_hook()] settings.
-*/
-SQLITE_API void *sqlite3_wal_hook(
-  sqlite3*,
-  int(*)(void *,sqlite3*,const char*,int),
-  void*
-);
-
-/*
-** CAPI3REF: Configure an auto-checkpoint
-** METHOD: sqlite3
-**
-** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
-** [sqlite3_wal_hook()] that causes any database on [database connection] D
-** to automatically [checkpoint]
-** after committing a transaction if there are N or
-** more frames in the [write-ahead log] file.  ^Passing zero or
-** a negative value as the nFrame parameter disables automatic
-** checkpoints entirely.
-**
-** ^The callback registered by this function replaces any existing callback
-** registered using [sqlite3_wal_hook()].  ^Likewise, registering a callback
-** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
-** configured by this function.
-**
-** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
-** from SQL.
-**
-** ^Checkpoints initiated by this mechanism are
-** [sqlite3_wal_checkpoint_v2|PASSIVE].
-**
-** ^Every new [database connection] defaults to having the auto-checkpoint
-** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
-** pages.  The use of this interface
-** is only necessary if the default setting is found to be suboptimal
-** for a particular application.
-*/
-SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);
-
-/*
-** CAPI3REF: Checkpoint a database
-** METHOD: sqlite3
-**
-** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
-** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
-**
-** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the
-** [write-ahead log] for database X on [database connection] D to be
-** transferred into the database file and for the write-ahead log to
-** be reset.  See the [checkpointing] documentation for addition
-** information.
-**
-** This interface used to be the only way to cause a checkpoint to
-** occur.  But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
-** interface was added.  This interface is retained for backwards
-** compatibility and as a convenience for applications that need to manually
-** start a callback but which do not need the full power (and corresponding
-** complication) of [sqlite3_wal_checkpoint_v2()].
-*/
-SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
-
-/*
-** CAPI3REF: Checkpoint a database
-** METHOD: sqlite3
-**
-** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
-** operation on database X of [database connection] D in mode M.  Status
-** information is written back into integers pointed to by L and C.)^
-** ^(The M parameter must be a valid [checkpoint mode]:)^
-**
-** <dl>
-** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
-**   ^Checkpoint as many frames as possible without waiting for any database
-**   readers or writers to finish, then sync the database file if all frames
-**   in the log were checkpointed. ^The [busy-handler callback]
-**   is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode.
-**   ^On the other hand, passive mode might leave the checkpoint unfinished
-**   if there are concurrent readers or writers.
-**
-** <dt>SQLITE_CHECKPOINT_FULL<dd>
-**   ^This mode blocks (it invokes the
-**   [sqlite3_busy_handler|busy-handler callback]) until there is no
-**   database writer and all readers are reading from the most recent database
-**   snapshot. ^It then checkpoints all frames in the log file and syncs the
-**   database file. ^This mode blocks new database writers while it is pending,
-**   but new database readers are allowed to continue unimpeded.
-**
-** <dt>SQLITE_CHECKPOINT_RESTART<dd>
-**   ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition
-**   that after checkpointing the log file it blocks (calls the
-**   [busy-handler callback])
-**   until all readers are reading from the database file only. ^This ensures
-**   that the next writer will restart the log file from the beginning.
-**   ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new
-**   database writer attempts while it is pending, but does not impede readers.
-**
-** <dt>SQLITE_CHECKPOINT_TRUNCATE<dd>
-**   ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the
-**   addition that it also truncates the log file to zero bytes just prior
-**   to a successful return.
-** </dl>
-**
-** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in
-** the log file or to -1 if the checkpoint could not run because
-** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not
-** NULL,then *pnCkpt is set to the total number of checkpointed frames in the
-** log file (including any that were already checkpointed before the function
-** was called) or to -1 if the checkpoint could not run due to an error or
-** because the database is not in WAL mode. ^Note that upon successful
-** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been
-** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero.
-**
-** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If
-** any other process is running a checkpoint operation at the same time, the
-** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a
-** busy-handler configured, it will not be invoked in this case.
-**
-** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the
-** exclusive "writer" lock on the database file. ^If the writer lock cannot be
-** obtained immediately, and a busy-handler is configured, it is invoked and
-** the writer lock retried until either the busy-handler returns 0 or the lock
-** is successfully obtained. ^The busy-handler is also invoked while waiting for
-** database readers as described above. ^If the busy-handler returns 0 before
-** the writer lock is obtained or while waiting for database readers, the
-** checkpoint operation proceeds from that point in the same way as
-** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
-** without blocking any further. ^SQLITE_BUSY is returned in this case.
-**
-** ^If parameter zDb is NULL or points to a zero length string, then the
-** specified operation is attempted on all WAL databases [attached] to
-** [database connection] db.  In this case the
-** values written to output parameters *pnLog and *pnCkpt are undefined. ^If
-** an SQLITE_BUSY error is encountered when processing one or more of the
-** attached WAL databases, the operation is still attempted on any remaining
-** attached databases and SQLITE_BUSY is returned at the end. ^If any other
-** error occurs while processing an attached database, processing is abandoned
-** and the error code is returned to the caller immediately. ^If no error
-** (SQLITE_BUSY or otherwise) is encountered while processing the attached
-** databases, SQLITE_OK is returned.
-**
-** ^If database zDb is the name of an attached database that is not in WAL
-** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If
-** zDb is not NULL (or a zero length string) and is not the name of any
-** attached database, SQLITE_ERROR is returned to the caller.
-**
-** ^Unless it returns SQLITE_MISUSE,
-** the sqlite3_wal_checkpoint_v2() interface
-** sets the error information that is queried by
-** [sqlite3_errcode()] and [sqlite3_errmsg()].
-**
-** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
-** from SQL.
-*/
-SQLITE_API int sqlite3_wal_checkpoint_v2(
-  sqlite3 *db,                    /* Database handle */
-  const char *zDb,                /* Name of attached database (or NULL) */
-  int eMode,                      /* SQLITE_CHECKPOINT_* value */
-  int *pnLog,                     /* OUT: Size of WAL log in frames */
-  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
-);
-
-/*
-** CAPI3REF: Checkpoint Mode Values
-** KEYWORDS: {checkpoint mode}
-**
-** These constants define all valid values for the "checkpoint mode" passed
-** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface.
-** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the
-** meaning of each of these checkpoint modes.
-*/
-#define SQLITE_CHECKPOINT_PASSIVE  0  /* Do as much as possible w/o blocking */
-#define SQLITE_CHECKPOINT_FULL     1  /* Wait for writers, then checkpoint */
-#define SQLITE_CHECKPOINT_RESTART  2  /* Like FULL but wait for for readers */
-#define SQLITE_CHECKPOINT_TRUNCATE 3  /* Like RESTART but also truncate WAL */
-
-/*
-** CAPI3REF: Virtual Table Interface Configuration
-**
-** This function may be called by either the [xConnect] or [xCreate] method
-** of a [virtual table] implementation to configure
-** various facets of the virtual table interface.
-**
-** If this interface is invoked outside the context of an xConnect or
-** xCreate virtual table method then the behavior is undefined.
-**
-** In the call sqlite3_vtab_config(D,C,...) the D parameter is the
-** [database connection] in which the virtual table is being created and
-** which is passed in as the first argument to the [xConnect] or [xCreate]
-** method that is invoking sqlite3_vtab_config().  The C parameter is one
-** of the [virtual table configuration options].  The presence and meaning
-** of parameters after C depend on which [virtual table configuration option]
-** is used.
-*/
-SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);
-
-/*
-** CAPI3REF: Virtual Table Configuration Options
-** KEYWORDS: {virtual table configuration options}
-** KEYWORDS: {virtual table configuration option}
-**
-** These macros define the various options to the
-** [sqlite3_vtab_config()] interface that [virtual table] implementations
-** can use to customize and optimize their behavior.
-**
-** <dl>
-** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]]
-** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT</dt>
-** <dd>Calls of the form
-** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
-** where X is an integer.  If X is zero, then the [virtual table] whose
-** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
-** support constraints.  In this configuration (which is the default) if
-** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
-** statement is rolled back as if [ON CONFLICT | OR ABORT] had been
-** specified as part of the users SQL statement, regardless of the actual
-** ON CONFLICT mode specified.
-**
-** If X is non-zero, then the virtual table implementation guarantees
-** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before
-** any modifications to internal or persistent data structures have been made.
-** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite
-** is able to roll back a statement or database transaction, and abandon
-** or continue processing the current SQL statement as appropriate.
-** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns
-** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode
-** had been ABORT.
-**
-** Virtual table implementations that are required to handle OR REPLACE
-** must do so within the [xUpdate] method. If a call to the
-** [sqlite3_vtab_on_conflict()] function indicates that the current ON
-** CONFLICT policy is REPLACE, the virtual table implementation should
-** silently replace the appropriate rows within the xUpdate callback and
-** return SQLITE_OK. Or, if this is not possible, it may return
-** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT
-** constraint handling.
-** </dd>
-**
-** [[SQLITE_VTAB_DIRECTONLY]]<dt>SQLITE_VTAB_DIRECTONLY</dt>
-** <dd>Calls of the form
-** [sqlite3_vtab_config](db,SQLITE_VTAB_DIRECTONLY) from within the
-** the [xConnect] or [xCreate] methods of a [virtual table] implmentation
-** prohibits that virtual table from being used from within triggers and
-** views.
-** </dd>
-**
-** [[SQLITE_VTAB_INNOCUOUS]]<dt>SQLITE_VTAB_INNOCUOUS</dt>
-** <dd>Calls of the form
-** [sqlite3_vtab_config](db,SQLITE_VTAB_INNOCUOUS) from within the
-** the [xConnect] or [xCreate] methods of a [virtual table] implmentation
-** identify that virtual table as being safe to use from within triggers
-** and views.  Conceptually, the SQLITE_VTAB_INNOCUOUS tag means that the
-** virtual table can do no serious harm even if it is controlled by a
-** malicious hacker.  Developers should avoid setting the SQLITE_VTAB_INNOCUOUS
-** flag unless absolutely necessary.
-** </dd>
-** </dl>
-*/
-#define SQLITE_VTAB_CONSTRAINT_SUPPORT 1
-#define SQLITE_VTAB_INNOCUOUS          2
-#define SQLITE_VTAB_DIRECTONLY         3
-
-/*
-** CAPI3REF: Determine The Virtual Table Conflict Policy
-**
-** This function may only be called from within a call to the [xUpdate] method
-** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
-** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
-** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
-** of the SQL statement that triggered the call to the [xUpdate] method of the
-** [virtual table].
-*/
-SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);
-
-/*
-** CAPI3REF: Determine If Virtual Table Column Access Is For UPDATE
-**
-** If the sqlite3_vtab_nochange(X) routine is called within the [xColumn]
-** method of a [virtual table], then it might return true if the
-** column is being fetched as part of an UPDATE operation during which the
-** column value will not change.  The virtual table implementation can use
-** this hint as permission to substitute a return value that is less
-** expensive to compute and that the corresponding
-** [xUpdate] method understands as a "no-change" value.
-**
-** If the [xColumn] method calls sqlite3_vtab_nochange() and finds that
-** the column is not changed by the UPDATE statement, then the xColumn
-** method can optionally return without setting a result, without calling
-** any of the [sqlite3_result_int|sqlite3_result_xxxxx() interfaces].
-** In that case, [sqlite3_value_nochange(X)] will return true for the
-** same column in the [xUpdate] method.
-**
-** The sqlite3_vtab_nochange() routine is an optimization.  Virtual table
-** implementations should continue to give a correct answer even if the
-** sqlite3_vtab_nochange() interface were to always return false.  In the
-** current implementation, the sqlite3_vtab_nochange() interface does always
-** returns false for the enhanced [UPDATE FROM] statement.
-*/
-SQLITE_API int sqlite3_vtab_nochange(sqlite3_context*);
-
-/*
-** CAPI3REF: Determine The Collation For a Virtual Table Constraint
-**
-** This function may only be called from within a call to the [xBestIndex]
-** method of a [virtual table].
-**
-** The first argument must be the sqlite3_index_info object that is the
-** first parameter to the xBestIndex() method. The second argument must be
-** an index into the aConstraint[] array belonging to the sqlite3_index_info
-** structure passed to xBestIndex. This function returns a pointer to a buffer
-** containing the name of the collation sequence for the corresponding
-** constraint.
-*/
-SQLITE_API SQLITE_EXPERIMENTAL const char *sqlite3_vtab_collation(sqlite3_index_info*,int);
-
-/*
-** CAPI3REF: Conflict resolution modes
-** KEYWORDS: {conflict resolution mode}
-**
-** These constants are returned by [sqlite3_vtab_on_conflict()] to
-** inform a [virtual table] implementation what the [ON CONFLICT] mode
-** is for the SQL statement being evaluated.
-**
-** Note that the [SQLITE_IGNORE] constant is also used as a potential
-** return value from the [sqlite3_set_authorizer()] callback and that
-** [SQLITE_ABORT] is also a [result code].
-*/
-#define SQLITE_ROLLBACK 1
-/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
-#define SQLITE_FAIL     3
-/* #define SQLITE_ABORT 4  // Also an error code */
-#define SQLITE_REPLACE  5
-
-/*
-** CAPI3REF: Prepared Statement Scan Status Opcodes
-** KEYWORDS: {scanstatus options}
-**
-** The following constants can be used for the T parameter to the
-** [sqlite3_stmt_scanstatus(S,X,T,V)] interface.  Each constant designates a
-** different metric for sqlite3_stmt_scanstatus() to return.
-**
-** When the value returned to V is a string, space to hold that string is
-** managed by the prepared statement S and will be automatically freed when
-** S is finalized.
-**
-** <dl>
-** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt>
-** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be
-** set to the total number of times that the X-th loop has run.</dd>
-**
-** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt>
-** <dd>^The [sqlite3_int64] variable pointed to by the V parameter will be set
-** to the total number of rows examined by all iterations of the X-th loop.</dd>
-**
-** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt>
-** <dd>^The "double" variable pointed to by the V parameter will be set to the
-** query planner's estimate for the average number of rows output from each
-** iteration of the X-th loop.  If the query planner's estimates was accurate,
-** then this value will approximate the quotient NVISIT/NLOOP and the
-** product of this value for all prior loops with the same SELECTID will
-** be the NLOOP value for the current loop.
-**
-** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt>
-** <dd>^The "const char *" variable pointed to by the V parameter will be set
-** to a zero-terminated UTF-8 string containing the name of the index or table
-** used for the X-th loop.
-**
-** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt>
-** <dd>^The "const char *" variable pointed to by the V parameter will be set
-** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN]
-** description for the X-th loop.
-**
-** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECT</dt>
-** <dd>^The "int" variable pointed to by the V parameter will be set to the
-** "select-id" for the X-th loop.  The select-id identifies which query or
-** subquery the loop is part of.  The main query has a select-id of zero.
-** The select-id is the same value as is output in the first column
-** of an [EXPLAIN QUERY PLAN] query.
-** </dl>
-*/
-#define SQLITE_SCANSTAT_NLOOP    0
-#define SQLITE_SCANSTAT_NVISIT   1
-#define SQLITE_SCANSTAT_EST      2
-#define SQLITE_SCANSTAT_NAME     3
-#define SQLITE_SCANSTAT_EXPLAIN  4
-#define SQLITE_SCANSTAT_SELECTID 5
-
-/*
-** CAPI3REF: Prepared Statement Scan Status
-** METHOD: sqlite3_stmt
-**
-** This interface returns information about the predicted and measured
-** performance for pStmt.  Advanced applications can use this
-** interface to compare the predicted and the measured performance and
-** issue warnings and/or rerun [ANALYZE] if discrepancies are found.
-**
-** Since this interface is expected to be rarely used, it is only
-** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS]
-** compile-time option.
-**
-** The "iScanStatusOp" parameter determines which status information to return.
-** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior
-** of this interface is undefined.
-** ^The requested measurement is written into a variable pointed to by
-** the "pOut" parameter.
-** Parameter "idx" identifies the specific loop to retrieve statistics for.
-** Loops are numbered starting from zero. ^If idx is out of range - less than
-** zero or greater than or equal to the total number of loops used to implement
-** the statement - a non-zero value is returned and the variable that pOut
-** points to is unchanged.
-**
-** ^Statistics might not be available for all loops in all statements. ^In cases
-** where there exist loops with no available statistics, this function behaves
-** as if the loop did not exist - it returns non-zero and leave the variable
-** that pOut points to unchanged.
-**
-** See also: [sqlite3_stmt_scanstatus_reset()]
-*/
-SQLITE_API int sqlite3_stmt_scanstatus(
-  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
-  int idx,                  /* Index of loop to report on */
-  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
-  void *pOut                /* Result written here */
-);
-
-/*
-** CAPI3REF: Zero Scan-Status Counters
-** METHOD: sqlite3_stmt
-**
-** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
-**
-** This API is only available if the library is built with pre-processor
-** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
-*/
-SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);
-
-/*
-** CAPI3REF: Flush caches to disk mid-transaction
-** METHOD: sqlite3
-**
-** ^If a write-transaction is open on [database connection] D when the
-** [sqlite3_db_cacheflush(D)] interface invoked, any dirty
-** pages in the pager-cache that are not currently in use are written out
-** to disk. A dirty page may be in use if a database cursor created by an
-** active SQL statement is reading from it, or if it is page 1 of a database
-** file (page 1 is always "in use").  ^The [sqlite3_db_cacheflush(D)]
-** interface flushes caches for all schemas - "main", "temp", and
-** any [attached] databases.
-**
-** ^If this function needs to obtain extra database locks before dirty pages
-** can be flushed to disk, it does so. ^If those locks cannot be obtained
-** immediately and there is a busy-handler callback configured, it is invoked
-** in the usual manner. ^If the required lock still cannot be obtained, then
-** the database is skipped and an attempt made to flush any dirty pages
-** belonging to the next (if any) database. ^If any databases are skipped
-** because locks cannot be obtained, but no other error occurs, this
-** function returns SQLITE_BUSY.
-**
-** ^If any other error occurs while flushing dirty pages to disk (for
-** example an IO error or out-of-memory condition), then processing is
-** abandoned and an SQLite [error code] is returned to the caller immediately.
-**
-** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK.
-**
-** ^This function does not set the database handle error code or message
-** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions.
-*/
-SQLITE_API int sqlite3_db_cacheflush(sqlite3*);
-
-/*
-** CAPI3REF: The pre-update hook.
-** METHOD: sqlite3
-**
-** ^These interfaces are only available if SQLite is compiled using the
-** [SQLITE_ENABLE_PREUPDATE_HOOK] compile-time option.
-**
-** ^The [sqlite3_preupdate_hook()] interface registers a callback function
-** that is invoked prior to each [INSERT], [UPDATE], and [DELETE] operation
-** on a database table.
-** ^At most one preupdate hook may be registered at a time on a single
-** [database connection]; each call to [sqlite3_preupdate_hook()] overrides
-** the previous setting.
-** ^The preupdate hook is disabled by invoking [sqlite3_preupdate_hook()]
-** with a NULL pointer as the second parameter.
-** ^The third parameter to [sqlite3_preupdate_hook()] is passed through as
-** the first parameter to callbacks.
-**
-** ^The preupdate hook only fires for changes to real database tables; the
-** preupdate hook is not invoked for changes to [virtual tables] or to
-** system tables like sqlite_sequence or sqlite_stat1.
-**
-** ^The second parameter to the preupdate callback is a pointer to
-** the [database connection] that registered the preupdate hook.
-** ^The third parameter to the preupdate callback is one of the constants
-** [SQLITE_INSERT], [SQLITE_DELETE], or [SQLITE_UPDATE] to identify the
-** kind of update operation that is about to occur.
-** ^(The fourth parameter to the preupdate callback is the name of the
-** database within the database connection that is being modified.  This
-** will be "main" for the main database or "temp" for TEMP tables or
-** the name given after the AS keyword in the [ATTACH] statement for attached
-** databases.)^
-** ^The fifth parameter to the preupdate callback is the name of the
-** table that is being modified.
-**
-** For an UPDATE or DELETE operation on a [rowid table], the sixth
-** parameter passed to the preupdate callback is the initial [rowid] of the
-** row being modified or deleted. For an INSERT operation on a rowid table,
-** or any operation on a WITHOUT ROWID table, the value of the sixth
-** parameter is undefined. For an INSERT or UPDATE on a rowid table the
-** seventh parameter is the final rowid value of the row being inserted
-** or updated. The value of the seventh parameter passed to the callback
-** function is not defined for operations on WITHOUT ROWID tables, or for
-** DELETE operations on rowid tables.
-**
-** The [sqlite3_preupdate_old()], [sqlite3_preupdate_new()],
-** [sqlite3_preupdate_count()], and [sqlite3_preupdate_depth()] interfaces
-** provide additional information about a preupdate event. These routines
-** may only be called from within a preupdate callback.  Invoking any of
-** these routines from outside of a preupdate callback or with a
-** [database connection] pointer that is different from the one supplied
-** to the preupdate callback results in undefined and probably undesirable
-** behavior.
-**
-** ^The [sqlite3_preupdate_count(D)] interface returns the number of columns
-** in the row that is being inserted, updated, or deleted.
-**
-** ^The [sqlite3_preupdate_old(D,N,P)] interface writes into P a pointer to
-** a [protected sqlite3_value] that contains the value of the Nth column of
-** the table row before it is updated.  The N parameter must be between 0
-** and one less than the number of columns or the behavior will be
-** undefined. This must only be used within SQLITE_UPDATE and SQLITE_DELETE
-** preupdate callbacks; if it is used by an SQLITE_INSERT callback then the
-** behavior is undefined.  The [sqlite3_value] that P points to
-** will be destroyed when the preupdate callback returns.
-**
-** ^The [sqlite3_preupdate_new(D,N,P)] interface writes into P a pointer to
-** a [protected sqlite3_value] that contains the value of the Nth column of
-** the table row after it is updated.  The N parameter must be between 0
-** and one less than the number of columns or the behavior will be
-** undefined. This must only be used within SQLITE_INSERT and SQLITE_UPDATE
-** preupdate callbacks; if it is used by an SQLITE_DELETE callback then the
-** behavior is undefined.  The [sqlite3_value] that P points to
-** will be destroyed when the preupdate callback returns.
-**
-** ^The [sqlite3_preupdate_depth(D)] interface returns 0 if the preupdate
-** callback was invoked as a result of a direct insert, update, or delete
-** operation; or 1 for inserts, updates, or deletes invoked by top-level
-** triggers; or 2 for changes resulting from triggers called by top-level
-** triggers; and so forth.
-**
-** See also:  [sqlite3_update_hook()]
-*/
-#if defined(SQLITE_ENABLE_PREUPDATE_HOOK)
-SQLITE_API void *sqlite3_preupdate_hook(
-  sqlite3 *db,
-  void(*xPreUpdate)(
-    void *pCtx,                   /* Copy of third arg to preupdate_hook() */
-    sqlite3 *db,                  /* Database handle */
-    int op,                       /* SQLITE_UPDATE, DELETE or INSERT */
-    char const *zDb,              /* Database name */
-    char const *zName,            /* Table name */
-    sqlite3_int64 iKey1,          /* Rowid of row about to be deleted/updated */
-    sqlite3_int64 iKey2           /* New rowid value (for a rowid UPDATE) */
-  ),
-  void*
-);
-SQLITE_API int sqlite3_preupdate_old(sqlite3 *, int, sqlite3_value **);
-SQLITE_API int sqlite3_preupdate_count(sqlite3 *);
-SQLITE_API int sqlite3_preupdate_depth(sqlite3 *);
-SQLITE_API int sqlite3_preupdate_new(sqlite3 *, int, sqlite3_value **);
-#endif
-
-/*
-** CAPI3REF: Low-level system error code
-** METHOD: sqlite3
-**
-** ^Attempt to return the underlying operating system error code or error
-** number that caused the most recent I/O error or failure to open a file.
-** The return value is OS-dependent.  For example, on unix systems, after
-** [sqlite3_open_v2()] returns [SQLITE_CANTOPEN], this interface could be
-** called to get back the underlying "errno" that caused the problem, such
-** as ENOSPC, EAUTH, EISDIR, and so forth.
-*/
-SQLITE_API int sqlite3_system_errno(sqlite3*);
-
-/*
-** CAPI3REF: Database Snapshot
-** KEYWORDS: {snapshot} {sqlite3_snapshot}
-**
-** An instance of the snapshot object records the state of a [WAL mode]
-** database for some specific point in history.
-**
-** In [WAL mode], multiple [database connections] that are open on the
-** same database file can each be reading a different historical version
-** of the database file.  When a [database connection] begins a read
-** transaction, that connection sees an unchanging copy of the database
-** as it existed for the point in time when the transaction first started.
-** Subsequent changes to the database from other connections are not seen
-** by the reader until a new read transaction is started.
-**
-** The sqlite3_snapshot object records state information about an historical
-** version of the database file so that it is possible to later open a new read
-** transaction that sees that historical version of the database rather than
-** the most recent version.
-*/
-typedef struct sqlite3_snapshot {
-  unsigned char hidden[48];
-} sqlite3_snapshot;
-
-/*
-** CAPI3REF: Record A Database Snapshot
-** CONSTRUCTOR: sqlite3_snapshot
-**
-** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a
-** new [sqlite3_snapshot] object that records the current state of
-** schema S in database connection D.  ^On success, the
-** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly
-** created [sqlite3_snapshot] object into *P and returns SQLITE_OK.
-** If there is not already a read-transaction open on schema S when
-** this function is called, one is opened automatically.
-**
-** The following must be true for this function to succeed. If any of
-** the following statements are false when sqlite3_snapshot_get() is
-** called, SQLITE_ERROR is returned. The final value of *P is undefined
-** in this case.
-**
-** <ul>
-**   <li> The database handle must not be in [autocommit mode].
-**
-**   <li> Schema S of [database connection] D must be a [WAL mode] database.
-**
-**   <li> There must not be a write transaction open on schema S of database
-**        connection D.
-**
-**   <li> One or more transactions must have been written to the current wal
-**        file since it was created on disk (by any connection). This means
-**        that a snapshot cannot be taken on a wal mode database with no wal
-**        file immediately after it is first opened. At least one transaction
-**        must be written to it first.
-** </ul>
-**
-** This function may also return SQLITE_NOMEM.  If it is called with the
-** database handle in autocommit mode but fails for some other reason,
-** whether or not a read transaction is opened on schema S is undefined.
-**
-** The [sqlite3_snapshot] object returned from a successful call to
-** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()]
-** to avoid a memory leak.
-**
-** The [sqlite3_snapshot_get()] interface is only available when the
-** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
-*/
-SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_get(
-  sqlite3 *db,
-  const char *zSchema,
-  sqlite3_snapshot **ppSnapshot
-);
-
-/*
-** CAPI3REF: Start a read transaction on an historical snapshot
-** METHOD: sqlite3_snapshot
-**
-** ^The [sqlite3_snapshot_open(D,S,P)] interface either starts a new read
-** transaction or upgrades an existing one for schema S of
-** [database connection] D such that the read transaction refers to
-** historical [snapshot] P, rather than the most recent change to the
-** database. ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK
-** on success or an appropriate [error code] if it fails.
-**
-** ^In order to succeed, the database connection must not be in
-** [autocommit mode] when [sqlite3_snapshot_open(D,S,P)] is called. If there
-** is already a read transaction open on schema S, then the database handle
-** must have no active statements (SELECT statements that have been passed
-** to sqlite3_step() but not sqlite3_reset() or sqlite3_finalize()).
-** SQLITE_ERROR is returned if either of these conditions is violated, or
-** if schema S does not exist, or if the snapshot object is invalid.
-**
-** ^A call to sqlite3_snapshot_open() will fail to open if the specified
-** snapshot has been overwritten by a [checkpoint]. In this case
-** SQLITE_ERROR_SNAPSHOT is returned.
-**
-** If there is already a read transaction open when this function is
-** invoked, then the same read transaction remains open (on the same
-** database snapshot) if SQLITE_ERROR, SQLITE_BUSY or SQLITE_ERROR_SNAPSHOT
-** is returned. If another error code - for example SQLITE_PROTOCOL or an
-** SQLITE_IOERR error code - is returned, then the final state of the
-** read transaction is undefined. If SQLITE_OK is returned, then the
-** read transaction is now open on database snapshot P.
-**
-** ^(A call to [sqlite3_snapshot_open(D,S,P)] will fail if the
-** database connection D does not know that the database file for
-** schema S is in [WAL mode].  A database connection might not know
-** that the database file is in [WAL mode] if there has been no prior
-** I/O on that database connection, or if the database entered [WAL mode]
-** after the most recent I/O on the database connection.)^
-** (Hint: Run "[PRAGMA application_id]" against a newly opened
-** database connection in order to make it ready to use snapshots.)
-**
-** The [sqlite3_snapshot_open()] interface is only available when the
-** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
-*/
-SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_open(
-  sqlite3 *db,
-  const char *zSchema,
-  sqlite3_snapshot *pSnapshot
-);
-
-/*
-** CAPI3REF: Destroy a snapshot
-** DESTRUCTOR: sqlite3_snapshot
-**
-** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P.
-** The application must eventually free every [sqlite3_snapshot] object
-** using this routine to avoid a memory leak.
-**
-** The [sqlite3_snapshot_free()] interface is only available when the
-** [SQLITE_ENABLE_SNAPSHOT] compile-time option is used.
-*/
-SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_snapshot_free(sqlite3_snapshot*);
-
-/*
-** CAPI3REF: Compare the ages of two snapshot handles.
-** METHOD: sqlite3_snapshot
-**
-** The sqlite3_snapshot_cmp(P1, P2) interface is used to compare the ages
-** of two valid snapshot handles.
-**
-** If the two snapshot handles are not associated with the same database
-** file, the result of the comparison is undefined.
-**
-** Additionally, the result of the comparison is only valid if both of the
-** snapshot handles were obtained by calling sqlite3_snapshot_get() since the
-** last time the wal file was deleted. The wal file is deleted when the
-** database is changed back to rollback mode or when the number of database
-** clients drops to zero. If either snapshot handle was obtained before the
-** wal file was last deleted, the value returned by this function
-** is undefined.
-**
-** Otherwise, this API returns a negative value if P1 refers to an older
-** snapshot than P2, zero if the two handles refer to the same database
-** snapshot, and a positive value if P1 is a newer snapshot than P2.
-**
-** This interface is only available if SQLite is compiled with the
-** [SQLITE_ENABLE_SNAPSHOT] option.
-*/
-SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_cmp(
-  sqlite3_snapshot *p1,
-  sqlite3_snapshot *p2
-);
-
-/*
-** CAPI3REF: Recover snapshots from a wal file
-** METHOD: sqlite3_snapshot
-**
-** If a [WAL file] remains on disk after all database connections close
-** (either through the use of the [SQLITE_FCNTL_PERSIST_WAL] [file control]
-** or because the last process to have the database opened exited without
-** calling [sqlite3_close()]) and a new connection is subsequently opened
-** on that database and [WAL file], the [sqlite3_snapshot_open()] interface
-** will only be able to open the last transaction added to the WAL file
-** even though the WAL file contains other valid transactions.
-**
-** This function attempts to scan the WAL file associated with database zDb
-** of database handle db and make all valid snapshots available to
-** sqlite3_snapshot_open(). It is an error if there is already a read
-** transaction open on the database, or if the database is not a WAL mode
-** database.
-**
-** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
-**
-** This interface is only available if SQLite is compiled with the
-** [SQLITE_ENABLE_SNAPSHOT] option.
-*/
-SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_snapshot_recover(sqlite3 *db, const char *zDb);
-
-/*
-** CAPI3REF: Serialize a database
-**
-** The sqlite3_serialize(D,S,P,F) interface returns a pointer to memory
-** that is a serialization of the S database on [database connection] D.
-** If P is not a NULL pointer, then the size of the database in bytes
-** is written into *P.
-**
-** For an ordinary on-disk database file, the serialization is just a
-** copy of the disk file.  For an in-memory database or a "TEMP" database,
-** the serialization is the same sequence of bytes which would be written
-** to disk if that database where backed up to disk.
-**
-** The usual case is that sqlite3_serialize() copies the serialization of
-** the database into memory obtained from [sqlite3_malloc64()] and returns
-** a pointer to that memory.  The caller is responsible for freeing the
-** returned value to avoid a memory leak.  However, if the F argument
-** contains the SQLITE_SERIALIZE_NOCOPY bit, then no memory allocations
-** are made, and the sqlite3_serialize() function will return a pointer
-** to the contiguous memory representation of the database that SQLite
-** is currently using for that database, or NULL if the no such contiguous
-** memory representation of the database exists.  A contiguous memory
-** representation of the database will usually only exist if there has
-** been a prior call to [sqlite3_deserialize(D,S,...)] with the same
-** values of D and S.
-** The size of the database is written into *P even if the
-** SQLITE_SERIALIZE_NOCOPY bit is set but no contiguous copy
-** of the database exists.
-**
-** A call to sqlite3_serialize(D,S,P,F) might return NULL even if the
-** SQLITE_SERIALIZE_NOCOPY bit is omitted from argument F if a memory
-** allocation error occurs.
-**
-** This interface is only available if SQLite is compiled with the
-** [SQLITE_ENABLE_DESERIALIZE] option.
-*/
-SQLITE_API unsigned char *sqlite3_serialize(
-  sqlite3 *db,           /* The database connection */
-  const char *zSchema,   /* Which DB to serialize. ex: "main", "temp", ... */
-  sqlite3_int64 *piSize, /* Write size of the DB here, if not NULL */
-  unsigned int mFlags    /* Zero or more SQLITE_SERIALIZE_* flags */
-);
-
-/*
-** CAPI3REF: Flags for sqlite3_serialize
-**
-** Zero or more of the following constants can be OR-ed together for
-** the F argument to [sqlite3_serialize(D,S,P,F)].
-**
-** SQLITE_SERIALIZE_NOCOPY means that [sqlite3_serialize()] will return
-** a pointer to contiguous in-memory database that it is currently using,
-** without making a copy of the database.  If SQLite is not currently using
-** a contiguous in-memory database, then this option causes
-** [sqlite3_serialize()] to return a NULL pointer.  SQLite will only be
-** using a contiguous in-memory database if it has been initialized by a
-** prior call to [sqlite3_deserialize()].
-*/
-#define SQLITE_SERIALIZE_NOCOPY 0x001   /* Do no memory allocations */
-
-/*
-** CAPI3REF: Deserialize a database
-**
-** The sqlite3_deserialize(D,S,P,N,M,F) interface causes the
-** [database connection] D to disconnect from database S and then
-** reopen S as an in-memory database based on the serialization contained
-** in P.  The serialized database P is N bytes in size.  M is the size of
-** the buffer P, which might be larger than N.  If M is larger than N, and
-** the SQLITE_DESERIALIZE_READONLY bit is not set in F, then SQLite is
-** permitted to add content to the in-memory database as long as the total
-** size does not exceed M bytes.
-**
-** If the SQLITE_DESERIALIZE_FREEONCLOSE bit is set in F, then SQLite will
-** invoke sqlite3_free() on the serialization buffer when the database
-** connection closes.  If the SQLITE_DESERIALIZE_RESIZEABLE bit is set, then
-** SQLite will try to increase the buffer size using sqlite3_realloc64()
-** if writes on the database cause it to grow larger than M bytes.
-**
-** The sqlite3_deserialize() interface will fail with SQLITE_BUSY if the
-** database is currently in a read transaction or is involved in a backup
-** operation.
-**
-** If sqlite3_deserialize(D,S,P,N,M,F) fails for any reason and if the
-** SQLITE_DESERIALIZE_FREEONCLOSE bit is set in argument F, then
-** [sqlite3_free()] is invoked on argument P prior to returning.
-**
-** This interface is only available if SQLite is compiled with the
-** [SQLITE_ENABLE_DESERIALIZE] option.
-*/
-SQLITE_API int sqlite3_deserialize(
-  sqlite3 *db,            /* The database connection */
-  const char *zSchema,    /* Which DB to reopen with the deserialization */
-  unsigned char *pData,   /* The serialized database content */
-  sqlite3_int64 szDb,     /* Number bytes in the deserialization */
-  sqlite3_int64 szBuf,    /* Total size of buffer pData[] */
-  unsigned mFlags         /* Zero or more SQLITE_DESERIALIZE_* flags */
-);
-
-/*
-** CAPI3REF: Flags for sqlite3_deserialize()
-**
-** The following are allowed values for 6th argument (the F argument) to
-** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
-**
-** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
-** in the P argument is held in memory obtained from [sqlite3_malloc64()]
-** and that SQLite should take ownership of this memory and automatically
-** free it when it has finished using it.  Without this flag, the caller
-** is responsible for freeing any dynamically allocated memory.
-**
-** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
-** grow the size of the database using calls to [sqlite3_realloc64()].  This
-** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
-** Without this flag, the deserialized database cannot increase in size beyond
-** the number of bytes specified by the M parameter.
-**
-** The SQLITE_DESERIALIZE_READONLY flag means that the deserialized database
-** should be treated as read-only.
-*/
-#define SQLITE_DESERIALIZE_FREEONCLOSE 1 /* Call sqlite3_free() on close */
-#define SQLITE_DESERIALIZE_RESIZEABLE  2 /* Resize using sqlite3_realloc64() */
-#define SQLITE_DESERIALIZE_READONLY    4 /* Database is read-only */
-
-/*
-** Undo the hack that converts floating point types to integer for
-** builds on processors without floating point support.
-*/
-#ifdef SQLITE_OMIT_FLOATING_POINT
-# undef double
-#endif
-
-#ifdef __cplusplus
-}  /* End of the 'extern "C"' block */
-#endif
-#endif /* SQLITE3_H */